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REVIEW
 CURRENT
OPINION The clinical relevance of KRAS gene mutation

in NSCLC
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Purpose of review

There are conflicting data on the potential prognostic and predictive role of mutant KRAS in nonsmall cell
lung cancer.

Recent findings

KRAS is the most frequently mutated oncogene in lung adenocarcinoma patients of non-Asian ethnicity.
Novell data also revealed that allelic variants of mutant KRAS are different concerning their biochemistry,
which may influence their prognostic and predictive role in nonsmall cell lung cancer (NSCLC). Though
mutant KRAS is not the target of molecular therapy yet, molecular diagnostic algorythm involving KRAS
determination can define a subgroup of tumors where no further diagnostic test is necessary due to the
exclusivity of this driver oncogene mutation. Recent data indicated that the prognostic role of mutant KRAS
in lung adenocarcinomas in Asian patients is evident, while more research is neccessary in non-Asian
populations. Studies also suggest the potential predictive role of mutant KRAS in the context of
chemosensitivity of NSCLC which may depend on the individual drug types. Recent data on the negative
predictive role of KRAS mutation on the efficacy of EGFR tyrosine kinase inhibitor (TKI) therapies confirm
previous findings.

Summary

Studies on the prognostic and predictive role of mutant KRAS in lung adenocarcinoma must be extended to
the analysis of the potential role for allelic variants.
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INTRODUCTION

KRAS protein is a member of the small GTPase
(guanin triphosphate-ase) protein family and serves
as a binary switch in signal transduction for most
growth factor receptors including EGFR, MET or
ALK. The human KRAS gene is located on chromo-
some 12.p12.1 encoded by six exons and is the
most frequently mutated oncogene in humans:
more than 80% of pancreatic cancers, more than
40% of colorectal cancers and around 30% of lung
adenocarcinomas harbor activating mutations of
the KRAS gene as one of the founder carcinogenic
mutations of the genome [1]. The complexity of
the function and regulation of KRAS protein may
explain its significance as oncogenic driver (Fig. 1).

Mutation of the KRAS gene in lung- as well as
colorectal or pancreatic cancers mostly occurs in
exon 2 at codon 12, less frequently at codon
13 (3–5%) and more rarely at exon 3 codon 61 (less
than 1%). The frequently mutated exon 2 codon
12/13 mutations affect the structure of the guanine
Health | Lippincott Williams & Wilk
nucleoside phosphate loop of the G-domain,
resulting in stabilization of the interaction with
GTP locking in the active state and inhibiting
GTPase activity. The codon 61 mutation inhibits
the GTPase potential of the protein resulting in
the accumulation of the GTP-bound RAS protein.
These mutations render KRAS protein constitutively
active to stimulate effector proteins independent
of the upstream growth factor receptor activity
[2,3

&

,4].
Interestingly, smoking carcinogenesis leaves

a molecular fingerprint behind in KRAS, as G to
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KEY POINTS

� Novel data demonstrate the differential functional
consequences of the various amino acid substitutions
in KRAS.

� The prognostic role of mutant KRAS in NSCLC must be
reanalyzed based on mutation types (base changes
and exon involvement).

� The predictive role of mutant KRAS in NSCLC must also
be reanalyzed based on mutation types.
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FIGURE 1. Schematic representation of KRAS functional
modulators and effectors. Unlike other signal transducers,

Lung and mediastinum
T transversion mutations are characteristic, unlike
transition mutations (G to A) induced by other types
of carcinogens. As a consequence, the base changes
in KRAS in lung adenocarcinoma as compared with
colorectal cancer are different, therefore, in lung
cancers of smokers G12C, G12V and G12A amino-
acid changes are the predominant in KRAS, while in
nonsmokers G12D, G13D and G12S mutations [5].

This review systematically analyses recent
literature on KRAS and lung cancer from molecular
pathology to medical oncology, revealing key un-
resolved issues which collectively result in the dis-
mail situation of KRAS-mutated NSCLC patients.
KRAS has close to a dozen various effector proteins, which
are engaged in almost all important signaling pathways
including MAPK-, AKT-, PLCg-PKC- and several other less
recognized ones suggesting that (k)-RAS protein may also
serve as a signal distributor in growth factor receptor
pathways [1]. It is less recognized that KRAS activity is
regulated and modulated by another dozen of proteins.
As activity of the KRAS protein is linked to its lipid membrane
association, it is facilitated by proteolytic processing (Rce1),
farnesylation/geranylation [farnesyl-/geranyl transferases,
(FTase)], methylation (ICMT) or phosphorylation (PKCa). Splice
variation also affects another membrane localization potential,
since the unique cys179 in KRAS4A is palmitoylated [by
palmytoil transferase, (PTase)]. Although most of the so-called
posttranslational modifications of KRAS promote lipid
membrane interactions, its phosphorylation by PKCa seems to
be the only one as a negative regulator [1]. KRAS protein is a
GDP/GTP binding protein, where only the GTP-RAS is active
in signal transduction as well as a GTPase. In this case
GTPase activity serves as an automatic delayed off-switch in
this protein. Accordingly, positive and negative regulators of
this activity are extremely important for the function of the wild
type (and most probably for the mutant) protein. The activators
of KRAS enhancing GDP/GTP conversion or GTP binding are
called GEF (guanine exchange factors) proteins, which include
SOS1, GRP1 and GRF1 while the physiological inhibitors are
GTPase activator proteins (GAPs), with the best known being
NF1 (mutation of which is responsible for neurofibromatosis),
and others are GAP1, RAB4 and RASAC [1].
DIAGNOSTIC SIGNIFICANCE OF KRAS IN
NONSMALL CELL LUNG CANCER

Molecular classification of adenocarcinoma of the
lung is an emerging paradigm in pathology practice
[6] and as national surveys have indicated, KRAS
mutation is the most frequent genetic alteration in
adenocarcinoma especially in patients with a smok-
ing history among the non-Asian population [6,7].
However, this is the opposite in Asian patients,
in case of whom EGFR mutation frequencies are
higher as compared to KRAS [7]. Meanwhile, the
debate seems to be continuing on two issues: associ-
ation with a special histology and association with
other driver mutations. In the past, several articles
reported on KRAS mutations, though at much lower
frequency, in squamous cell lung cancer. Detailed
and proper analysis of this issue using up-to-date
differential diagnostic criteria indicated that KRAS
mutation does not occur in lung cancer of squamous
histology [8

&&

]. In case it is detected, it represents an
adenocarcinoma component in squamous cancer.

The other outstanding issue is KRAS mutations
in combination with other mutations. This issue
was also studied in the past and no novel data
are available other than those indicating that
double mutants (KRAS and EGFR or KRAS and
ALK or EGFR and ALK) are extremely rare in lung
2 www.co-oncology.com Volume 26 � Number 00 � Month 2014
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adenocarcinoma [9]. The exception is B-RAF
mutation, which can occur together with KRAS in
NSCLC unlike in colorectal cancer [9]. Based on
these assumptions there are recent molecular patho-
logic recommendations for sequential testing of
lung adenocarcinoma, [7,10,11

&&

] unfortunately
none adjusted to the ethnicity of the patient popu-
lation. Here, we propose an ethnicity-based testing
algorithm in which the first step is to define the
KRAS mutant and the larger molecular subgroup of
non-Asian patients in which no further testing is
required, followed by testing for a less frequent but
predictive mutation as EGFR, then looking for ALK
rearrangement. In case of Asian patients the rational
alternative is to start with EGFR mutation testing as
the larger molecular subgroup (Fig. 2). Although
novel whole genome-sequencing technologies are
available which can achieve parallel determination
of several driver mutations, these have not yet been
introduced into daily practice. In less developed
countries or poorly reimbursed health systems the
rational and cost-saving sequencial molecular test-
ing is recommended.
Technology issues

The KRAS mutation status can be determined by
various molecular technologies, which vary signifi-
cantly in sensitivity from 0.1% (next-generation
sequencing) to 20% (Sanger sequencing) [6]. Today
no reliable data are at hand regarding the threshold,
which could rationally be used to diagnose a KRAS
mutant NSCLC. The presence of a minute mutant
subpopulation in an otherwise wild type tumor
population may have a questionable immediate
clinical or biological significance.

On the contrary, some technologies allow the
proper determination of the mutant/wild type ratio
K-RAS EGFR

EGFR K-RAS

ALK ALK

Other rare mutations

Non-Asian population Asian population

FIGURE 2. Ethnicity-based diagnostic algorithms for
molecular pathology of nonsmall cell lung cancer (NSCLC)
patients.
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of KRAS alleles [12]. However, this ratio must be
corrected for the T/N cell ratio as well, as this is also
highly variable in NSCLC [10,11

&&

].
Heterogeneity by histology, by genetics

Lung adenocarcinoma represent a morphologically
heterogenous class of lung cancer, in which the
tumor is rarely monotonous, but more frequently
heterogenous, accordingly recent guidelines recom-
mend to report precisely the percentage of various
histological types [6]. The question emerged if these
histological variants are distinct genetically or not.
This issue was analyzed in a small patient cohort in
which KRAS and EGFR mutation statuses were deter-
mined in heterogenous tumors. Results indicated
that despite the heterogenous morphology these
subclones were identical genetically in respect to
EGFR or KRAS mutations [13]. Whole genome
sequencing was used to determine clonality status
of primary lung adenocarcinoma with the finding
that 50% of primary tumors were genetically biclo-
nal [14]. Secondary tumors in lung cancer patients
are relatively frequent and a clonality analysis was
performed in a relatively small patient cohort.
Molecular analysis indicated that 20% of EGFR wild
type tumors were followed by a KRAS mutant
secondary tumor and 15% of EGFR mutant tumors
were followed by a KRAS mutant secondary tumor,
indicating the emergency of a molecularly distinct
clone in these patients [15]. There are no novel
data at hand concerning the clonality fidelity of
progressing lung adenocarcinoma: previous reports
suggested a 20% alteration rate at metastatic sites
[16]. In conclusion, clonality assessment of multiple
areas in heterogenous lung adenocarcinoma is not
recommended, but secondary tumors or metastatic
sites are suggested to be retested for molecular
classification due to a relatively high rate of possible
alterations.
PROGNOSTIC SIGNIFICANCE OF KRAS IN
NONSMALL CELL LUNG CANCER

There is an ongoing debate in the literature
concerning the potential prognostic role of KRAS
mutation in NSCLC. In the referred period, four
original studies were published from Asian and
non-Asian NSCLC patient populations. In non-
Asian patients the KRAS mutant status was associ-
ated with a nonsignificant trend for progressive
disease [17], while in another study [12] only c13
mutant tumors were associated with a nonsignifi-
cantly increased OS. On the contrary, in Asian
patients two studies concluded that KRAS mutant
status was found to be a poor prognostic factor for
ins www.co-oncology.com 3
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overall survival [18,19]. The differential prognostic
effect of KRAS mutation in Asian versus non-
Asian NSCLC patient populations was also dis-
covered by a recent meta-analysis, indicating that
among Asian patients, unlike in non-Asians,
KRAS mutant status is a significant poor prognostic
factor [20

&&

]. The fourth study performed was a
meta-analysis of four trial cohort NSCLC patients
(nonselected for ethnicity) in which KRAS mutant
status was again proved to be a neutral prognostic
factor for survival [21], but was however, associated
with a higher risk for secondary cancers. Based
on these novel data it can be concluded that
ethnicity of NSCLC patients is a significant factor
meaning a controversy over KRAS mutation
status. It can be concluded that among Asian
NSCLC patients the KRAS mutant status is un-
questionably a poor prognostic factor, while in
non-Asian patients further retrospective and pro-
spective studies are needed to discern the potential
role in cancer progression.
PREDICTIVE VALUE OF KRAS IN
NONSMALL CELL LUNG CANCER:
CHEMOTHERAPY

A long-lasting debate, similar to the prognostic
one concerns the potential predictive role of KRAS
mutation status in case of lung adenocarcinoma
treated with chemotherapy. Two studies analysed
a heterogenously treated NSCLC patient population
for the potential predictive role of the mutant
KRAS status and found no association [12,22],
though a potential negative effect of c13 mutations
was suggested in one study [12]. Another study
performed in Asian patients separated chemo-
therapies based on the individual protocols used
[19] and revealed that in case of pemetrexed or
gemcitabine protocols KRAS mutation status was
associated with a significantly poorer response rate
and progression free survival (PFS), which was not
the case in protocols containing taxanes. Another
meta-analysis was performed on a large trial-cohort
of NSCLC patients treated with ACT protocol,
revealing similarly to another study [12] that in
patients with c13 mutations therapy response was
significantly poorer, resulting in lower disease-free
survival (DFS) and overall survival (OS) [21]. Collec-
tively, these data suggest that KRAS mutant status
could be a predictive factor for chemotherapy in
NSCLC patients but further studies are need in two
directions. Clearly, the type of chemotherapy as well
as the exact type of KRAS mutations (codon involve-
ment or specific amino acid substitutions) may play
significant role, both of which must be rigorously
evaluated before drawing conclusions.
4 www.co-oncology.com
PREDICTIVE VALUE OF KRAS IN
NONSMALL CELL LUNG CANCER: TARGET
THERAPY
The major debate over the predictive role of KRAS
mutant status of NSCLC patients takes place in the
field of EGFR target therapies. In the early years, this
issue seemed to be simple as two studies and a meta-
analysis suggested that KRAS mutant status is a
significant negative predictor for EGFR tyrosine
kinase inhibitor (TKI) therapy [23–25]. However,
two recent studies have challenged these data;
one performed in Asian patients exclusively [19]
and the TAILOR trial performed on EGFRwt patients
[26]. Among the Asian NSCLC patients, RR and PFS
were found to be significantly poorer in EGFR TKI
treated KRAS mutant patients as compared with
KRASwt [19], but subgroup analysis of the EGFRwt
patients found only a trend for better PFS in KRASwt
patients compared with mutants. The TAILOR trial
was designed to analyse the efficacy of Erliti-
nibþDocetaxel regime in EGFRwt NSCLC patients
as compared with Docetaxel alone based on KRAS
mutation or EGFR amplification statuses [26].
Influenced by 2011’ASCO recommendations [27

&&

]
and interim analysis, KRAS and EGFR copy number
determinations were discontinued at interim
analysis therefore their predictive roles cannot be
properly assessed. A recent analysis of the German
Extended Access Program of IRESSA for the molecu-
lar characteristics of long-term responder patients
revealed that EGFR activating mutation was a
positive predictor, while KRAS mutation was a nega-
tive predictor for Gefitinib LTR [28]. A recent Phase-
II trial of Dacotinib (an irreversible EGFR TKI) versus
Erlotinib on advanced NSCLC patients contributed
to this debate as well [29]. PFS of Dacotinib treated
patients was superior in comparison to Erlotinib: in
the EGFR mutant population, however, there was no
difference in efficacy [29]. Further analysis of the
molecular subgroups revealed that in KRAS wild
type or KRAS and EGFR double wt populations
Dacotinib significantly outperformed Erlotinib as
far as the PFS was concerned, suggesting a positive
predictive role for wild type KRAS status for EGFR
TKI sensitivity. A commentary review of this trial
summarized this debate, suggesting that the EGFR
mutant group of NSCLC patients has the longest PFS
and KRAS mutant (EGFRwt) patients are character-
ized by the worst PFS upon EGFR TKI treatment,
while EGFRwt/KRASwt patients are between these
two ends [30

&

] (Fig. 3) A recent retrospective analysis
of EGFR TKI treatment in various molecular sub-
groups of NSCLC patients further supported this
opinion [31] but opened a novel area of research,
revealing that the KRAS mutant resistant group of
NSCLC patients can be further subdivided into
Volume 26 � Number 00 � Month 2014
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FIGURE 3. Progression-free survival of EGFR-TKI treated
advanced nonsmall cell lung cancer (NSCLC) patients
according to molecular subgroups [30&]. Data are mean
of published individual studies (þ/� ranges) expressed
in months.
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heterogenous responders to EGFR TKI based on the
KRAS codons involved and the type of amino acid
substitutions. This is a novel area of research which
may affect future studies and which may explain the
controversy over the role of mutant KRAS in NSCLC.

As compared to EGFR TKIs, anti-EGFR antibody
therapy is not a success story for the target therapy
of NSCLC. Cetuximab is weakly active in NSCLC
and mostly in the adenocarcinoma subgroup and
its effect is independent of the molecular status
of the tumor including KRAS mutation [32]. These
data are completely contradictory to the paradigm
present in colorectal cancer in which case anti-EGFR
monoclonal antibody therapies are the standard,
in which mutant KRAS is the strongest (negative)
molecular predictor [33].

NSCLC also seems to be different from colorectal
cancer in terms of acquired resistance to EGFR
target therapies. In colorectal cancer patients one
dominant resistance mechanism is the emergence of
Table 1. Functional differences between RAS mutation types [1,3

Amino

Codon G12V G13D

Functional consequences

GDP/GTP exchange Decreased Extrem

GEF sensitivity Decreased Mainta

GAP sensitivity Lost Increas

GTPase activity Minimal Decrea

GEF, GDP/GTP exchange factor; GAP, GTPase activating protein.
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the mutant KRAS subclone in the treated pre-
dominantly wild type tumor population [34

&

,35
&

].
In NSCLC various types of molecular mechanisms
other than KRAS mutation seem to be operational
during the development of resistance to EGFR TKI
including development of novel EGFR resistance
mutation (T790 M), HER2- or MET amplifications
[36].

Studies from the late 90s suggested that various
amino acid substitutions in KRAS induced by
oncogenic mutations variably affect chemical and
biological characteristics [1]. Using contemporary
technologies, this issue was recently revisited
[2,3

&

,4]. KRAS is active in GTP-bound form, there-
fore the GDP/GTP exchange rate is key factor
but oncogenic mutants are heterogeneous in this
respect. Oncogenic mutations lock KRAS in the
active state as the GTPase switch does not function
properly, but this inactivity is also heterogenous in
various oncogenic mutants. Accordingly, it did not
come by surprise that sensitivity to GEF and GAP
activators of the various KRAS mutants is also
heterogenous. (Table 1.) In conclusion, based on
the variability of the biochemical potentials of
various KRAS mutants, it is irrational to accept
homogenous functional activity in NSCLC or in
other cancer types. Clinical data have already started
to accumulate on the heterogeneous role of various
KRAS mutants in NSLC patients, but these studies
must be performed systematically. Since large
NSCLC patient databases are now available in which
the mutational statuses and chemo- and target
therapy efficacies are documented, these must be
analysed first before major prospective randomized
marker studies are performed.
THERAPY OF KRAS MUTANT LUNG
CANCER: NOVEL AGENTS, FUTURE
PERSPECTIVES

KRAS mutant NSCLC remains a clinical challenge
as far as therapy is concerned, due to a relative
&,4]

acid changes

Q61L Q61L

ely high Increased Increased

ined Maintained Maintained

ed Increased Increased

sed Minimal Minimal
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resistance to standard chemotherapeutic protocols
and to an absolute resistance to EGFR targeted TKI
therapies. This special patient group is now the
target of various phase I-II-III clinical trials involving
developmental therapeutics from immunotherapies
to novel target therapies. In the absence of clinically
available selective inhibitors of mutant KRAS, one
feasible approach is to target the main signaling
pathways controlled by the constitutively active
mutant KRAS, including RAF-MEK-ERK or PI3K-
AKT-mTOR. In the Battle trial chemorefractory,
NSCLC patients were randomized for EGFR TKI,
VEGFR TKI or B-RAF inhibitor [37] based on the
molecular status (EGFR or KRAS mutation). Interest-
ingly, the B-RAF inhibitor, Sorafenib, was proved to
be clinically active in various molecular subgroups
but most importantly in the KRAS mutant patient
population [37]. Although selumetinib, a MEK
inhibitor in monotherapy was clinically inactive
in KRAS mutant NSCLC patients, in combination
with docetaxel it exhibited an impressive clinical
activity as second line treatment for Stage III-IV
patients (significant improvement in PFS and OS)
[38]. This encouraging result may facilitate the
initiation of similar trial settings in which other
RAS-effector pathway inhibitors, such as mTOR, will
be the target arm of chemotherapy combinations
for KRAS mutant NSCLC patients.

However, the future of KRAS mutant cancer
patients remains largely in the hands of drug
designers. Previously mutant RAS was considered
as nondrugable owing to several unsuccessful
chemical approaches from farnesyl transferases to
GTP analogues. This trend seemed to be broken in
the past years. Using structure based drug design
technology, various RAS-binding proteins (SOS1,
C-RAF1, PDEd) were used to design novel small
molecular inhibitors of mutant RAS [39

&

–41
&

].
Some of these RAS-inhibitors (Kobe0065, deltarasin)
exhibited impressive preclinical activity in KRAS
mutant tumor models [40

&

,41
&

]. Meanwhile, the
future of these agents will clearly depend on their
clinical activity in KRAS mutant NSCLC patients.
CONCLUSION

All above data confirm that KRAS mutation is
the hallmark of lung adenocarcinoma or the adeno-
squamous mixed variant. Recent data indicated
that the prognostic role of mutant KRAS in lung
adenocarcinomas in Asian patients is evident,
while more research is necessary in non-Asian
populations. Studies also suggest that the potential
predictive role of mutant KRAS in the context of
chemosensitivity of NSCLC may depend on the
individual drug types. Recent data on the negative
6 www.co-oncology.com
predictive effects of KRAS mutation on efficacy of
EGFR TKI therapies confirm the previous findings.
Determination of KRAS mutation status of NSCLC
is useful in defining patient populations where no
further molecular testing is necessary due to the
exclusive driver role of this oncogene.
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