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Abstract

Organ transplantation has become a routine clinical practice for patients with end-
stage disease of liver, kidney, heart, or lung. Although improved immunosuppressant 
therapy substantially contributes to the success of transplantation, clinicians continue 
to face challenges because of wide interindividual variations in blood concentrations 
resulting in subtherapeutic or supratherapeutic levels. Many undesired side-effects or 
therapeutic failure of immunosuppressants as a consequence are the results of differ-
ences or changes in drug metabolism. Considering genetic and nongenetic factors, such 
as co-medication, can refine the immunosuppressant therapy, facilitating personalized 
treatments to individual recipients. This review provides an up-to-date summary of 
functional polymorphisms of enzymes involved in the metabolism of immunosuppres-
sants with low molecular weight and of the clinical significance of metabolic drug inter-
actions between immunosuppressive agents and other drugs in therapeutic regimens of 
transplant recipients.

Keywords: drug metabolism, genetic polymorphism, phenoconversion, calcineurin 
inhibitors, mTOR inhibitors, corticosteroids, inosine monophosphate dehydrogenase 
inhibitors

1. Introduction

Many undesired side-effects or therapeutic failures of drugs are the results of differences 
or changes in drug metabolism. A patient’s drug metabolizing capacity, highly influenced 
by genetic variations or alterations in the expression and activities of drug-metabolizing 
enzymes, can substantially modify the pharmacokinetics of a drug and eventually its efficacy 
or toxicity [1]. Even if the routine clinical practice applies blood concentration guided dosing, 
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the interindividual variability in drug metabolism calls for personalized medication primarily 
for drugs with narrow therapeutic index [2, 3]. The identification of genetic and nongenetic 
factors that can potentially affect the pharmacokinetics of a particular drug is a prerequisite 
of tailored pharmacotherapy [4, 5].

2. Genetic and nongenetic variations of drug-metabolizing 
cytochrome P450 (CYP) enzymes

CYP enzymes are the key players in the metabolism of most drugs; therefore, interindividual 
and intraindividual variations in CYP activities are of significant importance in clinical practice. 
The pharmacokinetic variability can divide the population into poor, intermediate, extensive, 
and ultra-rapid metabolizer phenotypes. The loss-of-function mutations in CYP genes result 
in permanent poor metabolism, whereas nongenetic (internal or environmental) factors can 
substantially modify the expression and activities of CYP enzymes, evoking transient poor or 
extensive/ultra-rapid metabolism [6, 7]. The clinical relevance for many CYP genetic variants, 
regarding drug efficacy, adverse drug reactions, or dose requirement, has been clearly evi-
denced [6–9]; however, the heritable genetic polymorphisms are not the only determinant fac-
tors in interindividual differences in drug metabolism. CYP genotype determines the potential 
for the expression of functional or nonfunctional enzymes; and nongenetic host factors (age, 
sex, and disease states) and environmental factors (nutrition, medication, smoking, and alcohol 
consumption) can alter the expression and activities of CYP enzymes [10]. Homozygous wild 
genotype, predicted to be translated to functional CYP enzyme, can be transiently switched 
into poor or extensive metabolizer phenotype, due to phenoconversion [1, 11]. Consequently, 
both the CYP genotype and the current CYP expression or activity should be considered for the 
estimation of a patient’s drug-metabolizing capacity.

The prevalence of loss-of-function or gain-of-function alleles is generally 1–10%; however, the 
distribution of the common CYP variants varies among different ethnic populations. CYP3A 
enzymes, responsible for the metabolism of approximately 40% of the drugs on the market, 
including many immunosuppressant agents, display great genetic and nongenetic variations. 
For CYP3A5, substantial interethnic differences in allelic variants have been demonstrated. 
The prevalence of CYP3A5*3 allele (6986A > G), resulting in splicing defect and nonfunctional 
CYP3A5 protein, is 88–97% in white (Caucasian), 66% in Asian, and 12–35% in African popu-
lations; consequently, a higher average proportion of functional CYP3A5 in the total hepatic 
CYP3A pool is expected in subjects of black origin [7, 12]. On the other hand, the enormous, 
even more than 100-fold interindividual variability in the expression and activity of CYP3A4 
is attributed to nongenetic factors rather than genetic polymorphisms [13]. CYP3A4*1B allele, 
which has a frequency of 3–5% in white populations, but a much higher frequency in African 
population (50–82%) has been reported to result in increased transcription; however, the clini-
cal significance of CYP3A4*1B to CYP3A4 function seems to be doubtful [14, 15]. CYP3A4*22 
allele with the prevalence of 2.5–8% in white and of 4% in Asian populations displays low 
hepatic CYP3A4 expression and results in decreased CYP3A4 activity [16]. Although the associ-
ation between CYP3A4 genotype and pharmacokinetic behavior of CYP3A-substrates has been 
extensively studied, no clear phenotype-genotype relationship has been described for CYP3A4.
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Beside the genetic polymorphisms, one of the major sources of interindividual or intraindi-
vidual variability in drug metabolism is concomitant medication and co-morbidities, evoking 
phenoconversion, notably CYP induction and enzyme inhibition [17]. CYP induction leads to 
an increase in the expression and activity of CYP enzymes and contributes to the increased 
elimination of drugs metabolized by the particular enzyme. Several pathways involving the 
activation of various nuclear receptors (PXR pregnane X receptor, CAR constitutive andro-
stane receptor, and glucocorticoid receptor) have been reported to enhance the transcription 
of CYP3A genes and to contribute to the complex regulation of CYP3A enzymes by drugs 
such as rifampicin, phenobarbital, carbamazepine, and synthetic or natural steroids [18–21]. 
Reduced drug concentration as a consequence of CYP3A induction leads to the lack of the 
pharmacological effect and drug failure. Phenoconversion converting genotypic extensive 
metabolism into phenotypic poor metabolism of drugs may occur during inflammation (ster-
ile or infection-induced inflammation). Elevated release of proinflammatory cytokines (IL-6, 
IL-1β, TNF-α) has been associated with downregulation of several drug-metabolizing CYPs, 
including CYP3A enzymes. The mechanism of downregulation is the repression of PXR and 
CAR that are involved in transcriptional regulation of CYP3A expression [22–26]. As a conse-
quence, transient poor metabolizer phenotype is developed, significantly increasing the risk 
of adverse drug reactions and impacting the clinical outcome [1, 27]. Likewise, co-medication 
can also give rise to poor metabolism. Several drugs or food components (e.g., bergamot-
tin) are known to inhibit the function of drug-metabolizing CYPs; therefore, the concomitant 
treatment with a CYP inhibitor is expected to increase the exposure of those pharmacons 
that are metabolized by the particular enzyme. As a consequence of CYP inhibition, the risk 
of increased exposure and drug-induced adverse reactions can be anticipated, primarily for 
drugs with narrow therapeutic index, such as tacrolimus and ciclosporin.

By recognizing individual differences in drug metabolism, personalized drug therapy 
adjusted to the patient’s drug-metabolizing capacity can help to avoid the potential side 
effects of drugs. The graft and recipient survival are highly influenced by drug-metabolizing 
capacity of the liver, and it is essential to predict potential drug-drug interactions and to tailor 
medication at both early and late postoperative periods.

3. Metabolism of immunosuppressants

In recent decades, transplantation (liver, kidney, heart, and lung) has become a routine pro-
cedure for patients with end stage disease. Advances in surgical techniques and postopera-
tive therapy have led to increasing numbers of transplantation and extended survival among 
these patients. The final outcome of transplantation and the long-term graft function have 
been improved mainly due to the development of potent and specific immunosuppressive 
drugs. Immunosuppressants efficiently decrease the risk of rejection, blocking the recipient’s 
immune system and protecting the transplanted organ. Because of the narrow therapeutic 
indexes and increased risk of adverse drug reactions, it is essential to apply personalized 
immunosuppressive therapy adjusted to patient’s drug-metabolizing capacity.

Immunosuppressants are generally classified according to their molecular mode of action; 
however, in terms of metabolic drug interactions, two main categories must be distinguished 
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Immunosuppressant Pharmacology Adverse effects Enzymes 
responsible for the 
metabolism

Calcineurin inhibitors:

Ciclosporin Selective inhibition of 
T-cell dependent immune 
response:

Calcineurin inhibition,

Inhibition of cytokine 
production

Nephrotoxicity, hepatotoxicity,

Hyperlipidaemia, hypertension,

Tremor, hyperkalaemia, 
hypomagnaesemia,

Hypertrichosis, gingiva hyperplasia

CYP3A4/5

Tacrolimus Selective inhibition of 
T-cell dependent immune 
response:

Calcineurin inhibition,

Inhibition of cytokine 
production

Nephrotoxicity, hypertension, 
diabetes, cholestasis, diarrhea,

Tremor, hyperkalaemia, 
hypomagnaesemia

CYP3A4/5

mTOR inhibitors:

Sirolimus Inhibition of B- and T-cell 
proliferation

Thrombocytopenia, anaemia, 
leukopenia, lymphocele, pneumonitis

Hyperlipidaemia,

Stomatitis aphtosa, wound-healing 
complications

CYP3A4/5

Everolimus Inhibition of B- and T-cell 
proliferation

Thrombocytopenia, anaemia, 
leukopenia, lymphocele, pneumonia

Hyperlipidaemia, hypertonia, 
wound-healing complications

CYP3A4/5

Purine analogues:

Azatioprin Inhibition of purine 
metabolism

Bone marrow suppression, 
leukopenia, anaemia, 
thrombocytopenia, myeloid 
dysplasia,

Cholestasis, hepatotoxicity

Thiopurine 
S-methyl-
transferase,

Xantine oxidase

Inosine monophosphate 
dehydrogenase inhibitors:

Mycofenolate mofetil

Mycofenolate

Selective inhibition of 
inosine monophosphate 
dehydrogenase,

Inhibition of B- and T-cell 
proliferation

Vomiting, diarrhea, abdominal pain

muscle weakness,

Anaemia, leucopenia

UDP-glucuronyl 
transferase,

CYP3A4/5

Corticosteroids:

Prednisone

Methyl-prednisolone

Inhibition of T-cell 
migration and production 
of T-cell lymphokines

Adrenal cortex suppression

Hypercholesterolemia, diabetes, 
hypertension, osteoporosis, 
osteonecrosis, cataracta, skin atrophy

CYP3A4/5

Table 1. Immunosuppressants with low molecular weight.
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according to their molecular weights (agents with low or high molecular weights). High-
molecular-weight agents, such as polyclonal and monoclonal antibodies (e.g., thymoglobulin, 
basiliximab, belatacept), that are not substrates for drug-metabolizing enzymes, are metabolized 
in common protein degradation pathways (intracellular catabolism by endosomal-lysosomal 
system) [28]; therefore, they are not subjects of metabolic drug interactions and not subjects of 
this review. In the metabolism of immunosuppressants with low molecular weight, drug-metab-
olizing CYP enzymes are involved which may entail metabolic drug interactions (Table 1).

3.1. Calcineurin inhibitors

For solid organ transplant recipients, the mainstay of the immunosuppressive regimens is 
calcineurin inhibitor (CNI) therapy with ciclosporin or tacrolimus which selectively blocks 
several signaling processes, resulting in the inhibition of T-cell activation and proliferation 
(Figure 1) [29, 30]. These drugs effectively treat allograft rejection; however, they display large 
interindividual variability in their pharmacokinetics, requiring monitoring of blood concen-
trations for optimal safety and therapeutic efficacy.

Ciclosporin A is an 11-amino acid cyclopeptide that blocks the production of IL-2 by inhibi-
tion of calcineurin and, as a consequence, the activation of T-cells (Figure 1) [31]. Ciclosporin 
undergoes extensive metabolism by CYP3A enzymes, producing more than 30 metabolites. 
The major metabolic pathways are N-demethylation to 4-N-demethyl ciclosporin, hydroxyl-
ation at several positions (1-, 6-, 9-monohydroxy and 1,9- or 6,9-dihydroxy-metabolites), and 
oxidation to carboxylic acid [32]. Some of the metabolites (e.g., 1,9-dihydroxy-ciclosporin, 

Figure 1. Molecular action of calcineurin inhibitors and corticosteriods. AP-1 activator protein 1, CAR constitutive 
androstane receptor, CSA ciclosporin, FKBP tarcolimus binding protein, GR glucocoticoid receptor, IL-2 interleukin 2, 
JNK c-Jun N-terminal kinase, MAP3K mitogen-activated protein 3 kinase, MPK-1 mitogen-activated protein kinase 1, 
NFAT nuclear factor of activated T-cells, PXR pregnane X receptor, Tacr tacrolimus.
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1c9-dihydroxy-ciclosporin, 1-carboxy-ciclosporin) are toxic contributing to the nephrotoxic 
and hepatotoxic properties of the parent compound [33, 34]. Consequently, high CYP3A activ-
ity increases the rate of ciclosporin metabolism and decreases the immunosuppressive effect, 
which requires dose modification [35]. However, high CYP3A activity also increases the toxic 
metabolite formation and the risk of nephrotoxicity and hepatotoxicity. Therefore, immuno-
suppressive strategy must consider the blood concentrations of both ciclosporin and the toxic 
metabolites, especially if they are accompanied with symptoms indicating nephrotoxicity or 
hepatotoxicity.

Immunosuppressive properties of tacrolimus are similar to ciclosporin; however, for the same 
pharmacological effect, significantly lower blood concentration of tacrolimus is required 
than that of ciclosporin. Tacrolimus, the 23-membered macrocyclic lactone, is converted by 
demethylation, hydroxylation, and ring rearrangement to at least 15 metabolites, and only a 
minor proportion of tacrolimus dose is eliminated as unchanged parent drug [36]. Metabolism 
of tacrolimus leads to the inactivation of the molecule, except for the major 13-O-demethyl 
and the minor 31-O-demethyl metabolites. The 13-O-demethyl-tacrolimus possesses some 
immunosuppressive effect; however, it is about one tenth as active as tacrolimus, whereas the 
31-O-demethyl metabolite displays an immunosuppressive activity comparable to tacrolimus 
[37, 38]. On the other hand, high blood concentration of 15-O-demethyl-tacrolimus metabolite 
has been reported to be associated with nephrotoxicity and myelotoxicity and with higher 
incidence of infections [39]. Similarly to ciclosporin, tacrolimus is metabolized by CYP3A 
enzymes, anticipating great interindividual and intraindividual differences in pharmacokinet-
ics of tacrolimus: (1) CYP3A activity of enterocytes contributes to the first-pass metabolism of 
tacrolimus; (2) substantial interindividual differences in hepatic CYP3A activity result in great 
variability in the rate of tacrolimus metabolism, which requires continuous drug monitor-
ing and dose modification primarily in the early postoperative period; (3) concomitant treat-
ment with CYP3A inhibitors is the potential source of metabolic drug interactions; (4) genetic 
polymorphisms of CYP3A5 also contribute to the high interindividual variability. Since the 
relative contribution of CYP3A5 to tacrolimus biotransformation is significantly higher than 
that of CYP3A4 [40], the recipients carrying wild type CYP3A5*1 allele or transplanted with 
liver grafts carrying CYP3A5*1 are able to metabolize tacrolimus more rapidly than CYP3A5 
nonexpressers [35, 41].

3.2. mTOR (mammalian target of rapamycin) inhibitors

The mTOR inhibitors prevent cell proliferation by blocking cell cycle progression from the 
G1-phase to the S-phase. The immunosuppressive activity is mediated via blocking mTOR 
protein kinases, resulting in inhibition of growth factor–mediated T-cell proliferation in 
response to IL-2 trigger [42]. Sirolimus is a 31-membered macrolide, whereas everolimus is 
a sirolimus derivative having a 2-hydroxyethyl chain substitution at position 40. Although 
the chemical structures of sirolimus and everolimus are similar to that of tacrolimus, the 
mechanism of action of mTOR inhibitors is distinct from calcineurin inhibitors, which allows 
the application of combination regimens. Additionally, the main advantages of mTOR inhibi-
tors are their nonnephrotoxic properties; therefore, mTOR inhibitors in combination with 
reduced dose calcineurin inhibitors can augment the calcineurin inhibitor–induced nephro-
toxicity [43–45].
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The structural similarities can explain some common metabolic pathways of mTOR inhibitors 
and tacrolimus, such as O-dealkylation and hydroxylation at several positions [42]. Sirolimus is 
primarily metabolized by CYP3A enzymes and by CYP2C8 at lower extent, producing hydrox-
ylated and O-demethylated metabolites (e.g., 12-hydroxy-, 16-O-demethyl-, 39-O-demethyl-, 
27–39-O-didemethyl- and dihydroxy-sirolimus as major metabolites) [46, 47]. The metabolism 
of sirolimus leads to inactivation, despite the fact that some metabolites display some phar-
macological activity less than one tenth of the parent drug. Everolimus is also metabolized by 
CYP3A and CYP2C8 enzymes; however, the elimination rate of  everolimus is more rapid than 
sirolimus (with 30 h vs. 62 h elimination half-lives, respectively). Everolimus is O-demethylated 
and  hydroxylated at several positions (forming both mono- and dihydroxy-metabolites); further-
more, a ring-opened metabolite is also formed from everolimus [46]. Everolimus-induced adverse 
effects are associated with the exposure rather to the parent compound than to its metabolites.

3.3. Antimetabolite purine analogues

One of the oldest agents with immunosuppressive activity introduced for kidney transplant 
recipients was the purine analogue 6-mercaptopurine, which acts by inhibiting purine nucle-
otide synthesis and, as a consequence, cell proliferation. The prodrug of 6-mercaptopurine, 
azathioprine with more favorable side-effect profile was later introduced to prevent rejection. 
Azathioprine is converted to 6-mercaptopurine by nonenzymatic cleavage of the thioether in 
enterocytes and hepatocytes or in erythrocytes. The major active metabolites, 6-thioguanine 
nucleotides, are formed via 6-thioinosine monophosphate in natural purine synthetic pathways. 
Inhibition of cell proliferation is mediated by incorporation of the thiopurine nucleotide ana-
logues into DNA (and RNA), causing DNA damage [48]. 6-Mercaptopurine, independently from 
either direct administration or production from azathioprine, undergoes metabolic inactivation 
by xanthine oxidase and thiopurine S-methyl transferase and is excreted in the urine, leaving less 
parent compound available to form thiopurine nucleotides [49]. Due to genetic polymorphism, 
the thiopurine S-methyl transferase activity is highly variable in patients; namely, those subjects 
who carry one or two nonfunctional thiopurine S-methyl transferase alleles are unable to toler-
ate normal doses of azathioprine and can experience serious myelosuppression [50]. Therefore, 
genotyping assay is recommended before starting azathioprine therapy to identify high-risk 
patients, and dosage reduction or alternative therapy is recommended for these patients.

3.4. Inosine monophosphate dehydrogenase inhibitors

Mycophenolic acid is a selective inhibitor of inosine monophosphate dehydrogenase, which is 
responsible for de novo biosynthesis of guanosine monophosphate, one of the building blocks 
of DNA. Depletion of the guanosine pool in the cell arrests the lymphotic cell proliferation 
and suppresses the subsequent immune response triggered by allogenic transplanted organ 
[51]. In several rapidly dividing cells (e.g. enterocytes), an alternative salvage pathway exists 
for purine synthesis in addition to de novo synthetic pathway; however, lymphocytes seem to 
be dependent on the de novo pathway. Consequently, mycophenolic acid is able to selectively 
block proliferation of T- and B-cells. Mycophenolic acid is available as enteric-coated myco-
phenolate sodium and as mycophenolate mofetil ester prodrug that is extensively hydrolyzed 
to the active metabolite mycophenolic acid by carboxylesterases.
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Mycophenolic acid is primarily metabolized by UDP-glucuronyl transferases (UGT1A7/8/9, 
UGT2B7), forming the major 7-O-mycophenolic glucuronide that is pharmacologically inactive 
and to the minor acil-glucuronide that has pharmacological activity comparable to the myco-
phenolic acid [52, 53]. The major proportion of the glucuronide conjugates is excreted in urine, 
whereas a smaller proportion that is eliminated via bile is metabolized by bacteria in the gut, 
and the deconjugated mycophenolic acid can be reabsorbed (enterohepatic circulation) [54]. 
Furthermore, in patients’ blood and urine, a minor demethylated metabolite (6-O-demethyl-
mycophenolic acid) was also detected that was proved to be produced by CYP3A enzymes.

3.5. Corticosteroids

At the beginning of transplantation history, glucocorticosteroids were the primary immu-
nosuppressive agents in the rejection prophylaxis strategy, and nowadays, they are still the 
first-line agents for treatment of graft rejection. The high-dose glucocorticoids given in peri-
transplantation are tapered to low doses in the maintenance phase, aiming the steroid-free 
immunosuppression regimens because of serious adverse effects of glucocorticoids developing 
in long-term therapy. Acute rejection is generally treated with methylprednisolone, whereas 
the maintenance therapy applies either methylprednisolone or prednisone. Corticosteroids 
activate the cytosolic glucucorticoid receptor and modulate several cellular functions, includ-
ing transcription of genes involved in proliferative and inflammatory processes. The activated 
receptor inhibits the transcription of NF-kB and activator protein 1 dependent genes, includ-
ing proinflammatory cytokines (Figure 1). This process leads to the depletion of T-cells and 
macrophage dysfunction [55].

Regioselective and stereospecific hydroxylation of corticosteroids at several positions (at car-
bon 2, 6, 7, 15, 16, and 21) are catalyzed by CYP3A enzymes. Additionally, dual effect of cor-
ticosteroids on CYP3A enzymes has been demonstrated: (1) corticosteroids can competitively 
inhibit the function of CYP3A [56], and (2) they can induce CYP3A transcription. Activated 
glucocorticoid receptor upregulates the expression of nuclear receptors (PXR and CAR) that 
are involved in transcriptional regulation of CYP3A genes. Moreover, the proximal promoter 
region of CYP3A4 gene contains glucocorticoid responsive element, which directly binds acti-
vated glucocorticoid receptor [18, 57]. As a consequence of increased expression and activity 
of CYP3A enzymes, metabolic drug interactions can be expected upon concomitant treatment 
with drugs that require CYP3A activity for their metabolism.

3.6. Novel investigational immunosuppressant agents

Although calcineurin inhibitor–based immunosuppression efficiently prevents rejection, 
adverse reactions of ciclosporin and tacrolimus, primarily nephrotoxicity, prompt the discov-
ery of novel agents with immunosuppressive activity [58]. Two investigational agents with low 
molecular weight should be mentioned: voclosporin and sotrastaurin. Voclosporin, a next-gen-
eration calcineurin inhibitor, is an analogue of ciclosporin with a single carbon extension added 
to the amino acid-1 of ciclosporin. Voclosporin displays higher binding affinity to cyclophillin 
A than ciclosporin leading to more potent inhibition of calcineurin [59]. Furthermore, it has a 
favorable safety property that it appears to be less toxic than currently available calcineurin 
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inhibitors. Similarly to ciclosporin, voclospiron is a substrate for CYP3A enzymes, anticipat-
ing pharmacokinetic/metabolic drug interactions with those agents that interact with ciclo-
sporin as well [60]. However, voclosporin is no longer pursed in  transplantation. Sotrastaurin 
is protein kinase C inhibitor that effectively inhibits IL-2 production with the mechanism dif-
ferent from calcineurin or mTOR inhibition. Although sotrastaurin displayed some potential 
in preventing allograft rejection in animal studies, high efficacy and safety failure rate were 
observed in clinical trials involving kidney and liver transplant patients [61, 62]. Therefore, 
further development of sotrastaurin in transplantation has been halted.

4. Significant metabolic drug interactions with immunosuppressants

4.1. Combined immunosuppressive therapy

Transplant recipients’ immunosuppressive therapy is often a multidrug therapy, primarily in 
the early postoperative period, which constitutes a challenge for clinicians to consider the com-
plexity of drug interactions. Due to the fact that the metabolism of immunosuppressants with 
low molecular weight is catalyzed by the same enzymes (CYP3A4 and CYP3A5), the blood con-
centrations, elimination half-lives, and consequently, the efficacy or toxicity of certain immu-
nosuppressant agents are expected to be modified during concomitant treatment. Therefore, 
during multidrug therapy or during withdrawal of any of the immunosuppressive drugs, spe-
cial attention is required for optimal dosing for therapeutic concentrations. Each modification 
in immunosuppressive regimens can lead to changes in blood concentration of a drug (Table 2).

Calcineurin inhibitors are often applied in combination with mTOR inhibitors. Since both 
mTOR inhibitors and calcineurin inhibitors are substrates of CYP3A enzymes and can inhibit 
CYP3A activities, reduction of calcineurin inhibitor doses is recommended. Standard doses of 
ciclosporin were observed to decrease the clearance of sirolimus or everolimus more substan-
tially than the doses of tacrolimus [45]. The major drawback of calcineurin inhibitor therapy is 
the risk of nephrotoxicity which appears to be dose dependent. The combination of low calci-
neurin inhibitor doses with mTOR inhibitors was found to be beneficial regarding retaining low 
rejection rates and lowering the risk of nephrotoxicity [44, 63]. To avoided renal dysfunction, 
the complete substitution of calcineurin inhibitors for mTOR inhibitors was attempted; how-
ever, the substitution showed an increase in graft failure in patients treated with merely mTOR 
inhibitors [64].

Corticosteroids have been demonstrated to induce the expression of the efflux pump trans-
porter ABCB1 (P-glycoprotein) playing a main role in intestinal drug absorption and of CYP3A 
enzymes responsible for the metabolism of the majority of drugs [18, 65]. Therefore, the con-
comitant treatment of calcineurin inhibitors or mTOR inhibitors with corticosteroids can be 
expected to decrease the blood concentrations of tacrolimus/ciclosporin or of sirolimus/evero-
limus. Although the evidence for clinically significant interactions between corticosteroids and 
ciclosporin or mTOR inhibitors is limited, clear clinical effect of corticosteroids on tacrolimus 
exposure has been demonstrated [66, 67]. This also implies that dose reduction or cessation 
of corticosteroids leads to an increase in blood concentrations of tacrolimus, requiring dose 

Metabolic Drug Interactions with Immunosuppressants
http://dx.doi.org/10.5772/intechopen.74524

417



Immunosuppressant Drug interactions Consequences

Ciclosporin

Tacrolimus

sirolimus, everolimus Increased blood levels of ciclosporin and mTOR 
inhibitors; increased risk of nephrotoxicity

prednisolone Decreased blood levels due to enhanced 
metabolism of ciclosporin/tacrolimus, increased 
risk of rejection

Antifungals:

ketoconazole Increased blood levels of ciclosporin/tacrolimus; 
replacement of ketoconazole to other azole 
derivatives

fluconazole, voriconazole, 
itraconazole

Inhibition of CYP3A4; dose reduction of 
ciclosporin, tacrolimus is necessary

Antibiotics:

clarithromycin, erythromycin, 
azithromycin

Irreversible inhibition of CYP3A4; increased blood 
levels of ciclosporin/tacrolimus

rifampicin CYP3A4 induction; enhanced metabolism of 
ciclosporin, tacrolimus; increased risk of rejection

Antiviral agents:

ritonavir Irreversible inhibition of CYP3A4; increased blood 
levels of ciclosporin/tacrolimus

Lipid-lowering agents:

fluvastatin, simvastatin, 
atorvastatin

Increased statin exposure by ciclosporin; incrased 
risk of myopathy and rhabdomyolysis

Antihypertensive agents:

diltiazem, verapamil, amlodipine Irreversible inhibition of CYP3A4, formation of 
metabolic intermediate complex;

Increased blood levels of ciclosporin / tacrolimus

nifedipine Reversible, competitive inhibition CYP3A4

carvedilol Inhibition of ABCB1 transporter; increase 
absorption of oral ciclosporin

Antidiabetic agents:

troglitazone, rosiglitazone CYP3A4 induction; enhanced metabolism of 
ciclosporin/tacrolimus; increased risk of rejection

Psychopharmacons:

carbamazepine, valproic acid CYP3A4 induction; enhanced metabolism of 
ciclosporin/tacrolimus; increased risk of rejection

fluvoxamine Inhibition of CYP3A4; contraindicated

Herbs:

St John’s wort CYP3A4 induction; enhanced metabolism of 
ciclosporin/tacrolimus; increased risk of rejection

grapefruit, pomelo Irreversible inhibition of CYP3A4; increased blood 
levels of ciclosporin/tacrolimus
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Immunosuppressant Drug interactions Consequences

Sirolimus

Everolimus

ciclosporin Increased blood levels of ciclosporin and mTOR 
inhibitors; increased risk of nephrotoxicity

prednisolone Decreased blood levels due to enhanced 
metabolism of sirolimus/everolimus, increased risk 
of rejection

Antifungals:

ketoconazole Increased blood levels of mTOR inhibitors; 
replacement of ketoconazole to other azole 
derivatives

fluconazole, voriconazole, 
itraconazole

Inhibition of CYP3A4; dose reduction of sirolimus, 
everolimus is necessary; voriconazole – sirolimus 
combination is contraindicated

Antibiotics:

clarithromycin, erythromycin, 
azithromycin

Irreversible inhibition of CYP3A4; increased blood 
levels of sirolimus/everolimus

rifampicin CYP3A4 induction; enhanced metabolism of 
sirolimus/everolimus; increased risk of rejection

Antiviral agents:

ritonavir Irreversible inhibition of CYP3A4; increased blood 
levels of sirolimus/everolimus

Antihypertensive agents:

diltiazem, verapamil, amlodipine Irreversible inhibition of CYP3A4, formation of 
metabolic intermediate complex;

Increased blood levels of sirolimus/everolimus; 
verapamil-sirolimus combination is associated with 
increased blood levels of verapamil

Antidiabetic agents:

troglitazone, rosiglitazone CYP3A4 induction; enhanced metabolism of 
sirolimus/everolimus; increased risk of rejection

Psychopharmacons:

carbamazepine, valproic acid CYP3A4 induction; enhanced metabolism of 
sirolimus/everolimus; increased risk of rejection

Herbs:

St John’s wort CYP3A4 induction; enhanced metabolism of 
sirolimus/everolimus; increased risk of rejection

grapefruit, pomelo Irreversible inhibition of CYP3A4; increased blood 
levels of sirolimus/everolimus

6-mercaptopurine

Azathioprine

allopurinol Inhibition of xantine oxidase; myelotoxicity

Mycophenolate Ciclosporin Inhibition of enterohepatic circulation, decrease in 
blood levels of mycophenolic acid
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adjustment [68]. Interestingly, CYP3A5 nonexpressers with CYP3A5*3/*3 genotype are more 
susceptible to glucocorticoid induction than CYP3A5*1 carriers [69]; thus, more pronounced 
increase in tacrolimus exposure can be expected in CYP3A5 nonexpressers after glucocorticoid 
withdrawal.

Clinically significant interaction between mycophenolic acid, the active metabolite of myco-
phenolate mofetil, and ciclosporin has been reported [70]. The mycophenolate-glucuronide 
metabolite eliminated into bile undergoes enterohepatic cycling because of intestinal bacterial 
metabolism and reabsorption of mycophenolic acid. The enterohepatic circulation, contrib-
uting to overall pharmacokinetics of mycophenolic acid by 37% in human, is inhibited by 
concomitant administration of ciclosporin but does not interfere with tacrolimus or sirolimus 
[71, 72]. In ciclosporin-mycophenolate combination therapy, the reduced blood concentration 
of mycophenolic acid is necessary to ameliorate by increasing dose of mycophenolate mofetil. 
Furthermore, special attention on optimal dosing is required during switching ciclosporin-
mycophenolate to tacrolimus-mycophenolate therapy and vice versa.

4.2. Metabolic drug interactions between immunosuppressants and post-transplant 
medication

4.2.1. Treatment and prevention of infections

Environmental circumstances and immune deficiencies due to immunosuppression therapy 
make recipients susceptible for infections that are one of the leading complications after 
organ transplantation; therefore, prevention and management of infections is a major task 

Immunosuppressant Drug interactions Consequences

Antiviral agents:

ganciclovir, valganciclovir Mycophenolate-glucuronide inhibits renal tubular 
secretion of ganciclovir; increased blood levels 
of ganciclovir and increased risk of toxicity 
(nephrotoxicity, neutropenia, leukopenia)

Prednisolone

Methylprednisolone

Antifungals:

ketoconazole, fluconazole, 
voriconazole, itraconazole

Increased blood levels of corticosteroids

Inhibition of CYP3A4

Antibiotics:

rifampicin CYP3A4 induction; enhanced metabolism of 
corticosteroids

Antiviral agents:

ritonavir Irreversible inhibition of CYP3A4; increased blood 
levels of corticosteroids

Table 2. Clinically relevant pharmacokinetic drug interactions with immunosuppressants.
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primarily in the early postoperative period. Since fungal infections are a threatening cause 
of morbidity and mortality, the antifungal prophylaxis is an important element of posttrans-
plant medication. The antifungal azole-derivatives are potent (some of them are very strong) 
CYP3A inhibitors, predicting potential metabolic drug interactions with calcineurin inhibi-
tors, mTOR inhibitors, or corticosteroids. The most potent CYP3A inhibitor is ketoconazole, 
able to increase blood concentrations (AUC) of ciclosporin (> 4-fold), tacrolimus (> 2-fold), 
sirolimus (11-fold), everolimus (15-fold), and methylprednisolone (> 2-fold) [73, 74]. Because 
of the substantial increase in blood concentrations of several immunosuppressants that can 
be avoided by drastic reduction of immunosuppressant doses and because of other adverse 
effects of ketoconazole, the concomitant medication is discouraged. Fluconazole, itraconazole, 
and voriconazole are alternative regimens for antifungal therapy or prophylaxis; however, all 
three drugs are azole derivatives and have the capability to inhibit CYP3A function, albeit 
at a lower extent than ketoconazole [75–77]. Although the continuous immunosuppressant 
monitoring is highly recommended and dose adjustment (reduction) is generally required, 
the antifungal treatment with fluconazole, itraconazole, or voriconazole can be safely applied 
except for voriconazole-sirolimus combination [78]. Because of an extreme (7-fold) increase 
of sirolimus blood concentrations as a consequence of concomitant use of voriconazole, this 
combination is contraindicated. Amphotericin B, the nonazole type antifungal agent, does 
not influence CYP activities; therefore, no metabolic drug interactions can be expected in con-
comitant treatment with immunosuppressants. However, the widespread use of amphoteri-
cin B is limited because of its toxicity profile, primarily because its nephrotoxic side-effect can 
contribute to the renal injury by ciclosporin or tacrolimus.

Organ transplant patients are at high risk for developing bacterial infections that occur in 
20–40% of transplants. Potential sources of infection are from hospital and community expo-
sures, as well as from endogenous flora of patients. Among the antibiotics used for treatment 
of infections, the macrolide erythromycin and clarithromycin have been reported to interact 
with immunosuppressive agents. These macrolides are CYP3A substrates and bind to CYP3A4 
enzymes, leading to a complex formation that completely inactivates CYP3A4 enzyme [79–82]. 
The in vitro findings were confirmed by clinical observations that blood concentrations of ciclo-
sporin/tacrolimus or sirolimus/everolimus increased as a consequences of concomitant treat-
ment with erythromycin or clarithromycin [73, 83–86]. Page et al. [87] and Mori et al. [88] have 
reported some potential of azithromycin for drug interaction with ciclosporin and tacrolimus; 
however, in vitro experiments demonstrated that azithromycin poorly interfere with CYP3A4 
[89]. When concomitant therapy with these macrolides is necessary, blood concentrations of 
calcineurin inhibitors or mTOR inhibitors should be carefully monitored, and the immunosup-
pressant doses should be adjusted. In contrast, the macrolide rifampicin is a potent CYP3A4 
inducer and can activate PXR, resulting in a substantial increase in CYP3A4 expression [90]. 
The increased CYP3A4 activity consequently enhances the metabolism and elimination of cal-
cineurin inhibitors, mTOR inhibitors, and corticosteroids [91–93]. However, blood concentra-
tion–guided dose-adjustment of immunosuppressants should be applied carefully because 
increased metabolism can evoke elevation of toxic metabolite formation (e.g., ciclosporin).

A significant cause of graft failure still remains viral infections, which are acquired as new 
infection or reactivation of latent viruses. After transplantation, cytomegalovirus (CMV) is the 

Metabolic Drug Interactions with Immunosuppressants
http://dx.doi.org/10.5772/intechopen.74524

421



most common viral infection in recipients, primarily in those CMV-seronegative patients who 
were transplanted with graft from CMV-seropositive donors, resulting in viral reactivation. 
For prophylaxis and treatment of CMV infection, aciclovir, ganciclovir, and valganciclovir 
(the prodrug of ganciclovir) are generally applied. None of these antiviral drugs influences 
the function of drug-metabolizing CYPs or UDP-glucuronyl transferases, and consequently, 
they do not modify the pharmacokinetic properties of immunosuppressants. Aciclovir and 
ganciclovir are eliminated primarily in the urine as unchanged compounds. Increased risk 
of nephrotoxicity and leukopenia has been reported in patients who were co-medicated with 
a drug that can reduce renal clearance of aciclovir or ganciclovir. During co-administration 
with mycophenolate or mycophenolate-mofetil, mycophenolate-glucuronide and aciclovir or 
ganciclovir can significantly compete for renal tubular secretion, resulting in an increase in 
aciclovir/ganciclovir and mycophenolate-glucuronide exposure, as well as the risk of neph-
rotoxicity or leukopenia [94–96]. Management of potent metabolic drug interactions between 
antiviral protease inhibitors and immunosuppressants is a major challenge because most of 
the protease inhibitors are clinically significant CYP3A4 inhibitors. Ritonavir-boosted thera-
pies require substantial reduction of immunosuppressant doses (to 5–20% for ciclosporin; to 
1–3.5% for tacrolimus) with continuous monitoring of blood concentrations [97–101].

4.2.2. Treatment of dyslipidemia

Dyslipidemia is often developed as an adverse impact of immunosuppressive therapy [102]. 
Ciclosporin, mTOR inhibitors, and prednisone are mainly implicated in lipid alterations. For 
treatment of hypercholesterolemia, the basic guidelines for dyslipidemia recommend diet 
and HMG-CoA reductase (hydroxymethyl-glutaryl-CoA reductase) inhibitor statins with 
special considerations for transplant patients. Although both ciclosporin and most statins 
(atorvastatin, fluvastatin, simvastatin, lovastatin) are primarily metabolized by CYP3A4 and 
metabolic drug interactions are likely occur, statins do not evoke increased ciclosporin expo-
sure [103–106]. In contrast, ciclosporin induces significant elevation of statin blood concentra-
tions which can be explained by the ten-fold higher molar concentrations of ciclosporin than 
statins. In combination with ciclosporin, the blood levels are increased in a statin-dependent 
manner, e.g., lovastatin is increased to a much greater extent than atorvastatin [104, 107]. 
Dose reduction of lipid-lowering agents is recommended to avoid myopathy or rhabdomy-
olysis. The blood concentrations of macrolide immunosuppressants (tacrolimus, sirolimus, 
and everolimus) are similar to that of statins [108, 109]; therefore, the lack of clinically relevant 
interactions between macrolides and statins is not unexpected.

4.2.3. Antihypertensive agents

Organ transplantation and immunosuppressive therapy (e.g., ciclosporin, prednisone) fre-
quently trigger hypertension or worsen the preexisting disease in patients. While most of the 
antihypertensive agents (β-adrenoceptor blockers, α1-adrenergic receptor antagonists, central 
α2-adrenergic receptor agonists, angiotensin-converting enzyme inhibitors, and angiotensin 
II receptor blockers) are not expected to influence the pharmacokinetics of immunosuppres-
sants, medication with diltiazem, verapamil, or amlodipine requires special consideration and 
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frequent monitoring of immunosuppressant blood concentrations. The metabolism of all three 
Ca-channel blockers is primarily catalyzed by CYP3A4, anticipating potential drug interac-
tions with immunosuppressants. Furthermore, significant inhibition of CYP3A4 by diltiazem, 
verapamil, and amlodipine has been demonstrated with an additional inhibitory property of 
metabolite intermediate complex formation that catalytically inactivates CYP3A4 and CYP3A5 
enzymes [79, 80, 82, 110–114]. The inactivation of CYP3A enzymes by comedication with these 
antihypertensive drugs consequently leads to a permanent increase in blood concentrations of 
calcineurin inhibitors or mTOR inhibitors [115–122]. In transplant recipients comedicated with 
sirolimus and verapamil, an increase of blood concentrations of both sirolimus and verapamil 
was observed [123]. Furthermore, in patients carrying wild-type CYP3A5*1 allele, concomitant 
treatment with amlodipine significantly decreased tacrolimus clearance, and along with the 
changes in tacrolimus pharmacokinetics, an increase in amlodipine blood concentrations was 
also observed [124]. The metabolism of the Ca-channel blocker nifedipine is catalyzed almost 
exclusively by CYP3A enzymes, and competition for the active site of CYP3As may be expected 
if nifedipine and CYP3A substrate calcineurine inhibitors or mTOR inhibitors are concomi-
tantly applied. In contrast, no evidence for pharmacokinetic drug interactions has been pro-
vided in transplant recipients treated with nifedipine and ciclosporin/tacrolimus or sirolimus/
everolimus. Carvedilol is often used for treatment of hypertension in transplant patients, and 
pharmacokinetic drug interaction between carvedilol and ciclosporin has been observed that 
required 10–20% reduction of ciclosporin doses to maintain the blood concentrations within 
the therapeutic range [125, 126]. The major metabolic pathways of carvedilol are catalyzed by 
CYP2D6 and CYP1A2 rather than by CYP3A4 [127]; however, inhibition of CYP3A enzymes by 
carvedilol does not account for pharmacokinetic drug interaction with ciclosporin. Carvedilol 
has been demonstrated to block the function of the ABCB1 transporter protein (ATP-binding 
cassette B1; previously called as Pgp) [128]. In the intestinal wall, ABCB1 transporter pumps 
pharmacons or other xenobiotics passed into the enterocytes back into the gut lumen. The inhi-
bition of ABCB1-mediated transcellular transport in the intestine by carvedilol is responsible 
for the increased absorption of ciclosporin. Under careful monitoring of ciclosporin blood con-
centration, the ABCB1 inhibition by carvedilol can be beneficial in ciclosporin-sparing therapy 
for transplant patients. Since the absorption of tacrolimus and mTOR inhibitors is also medi-
ated by ABCB1, similar pharmacokinetic drug interactions between these immunosuppres-
sants and carvedilol are presumably developed as with ciclosporin.

4.2.4. Antihyperglycemic therapy

Hyperglycemia developing posttransplant diabetes mellitus is generally medication related. 
Corticosteroids can evoke reduction of glucose tolerance, whereas ciclosporin and tacrolimus 
directly block insulin-release by islet cells. The metabolism of the sulfonylurea type antidiabetic 
agents (e.g., tolbutamide, glipizide, glibenclamide, and glimepiride) is mediated by CYP2C9; 
therefore, metabolic drug interactions with immunosuppressants are not expected in patients 
treated with any of these oral hypoglycemic drugs. Although the thiazolidinedione type trogli-
tazone and rosiglitazone are not CYP3A substrates, they can induce the expression of CYP3A 
enzymes by activation of the nuclear receptors, PXR and CAR [129–132]. Enhanced transcrip-
tion results in an increase in CYP3A activities and the metabolism of calcineurin inhibitors, 
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mTOR inhibitors and corticosteroids, increasing the risk of rejection [133]. Immunosuppressant 
dose adjustment is required to avoid subtherapeutic blood concentrations, and careful moni-
toring of immunosuppressant blood concentrations is recommended during withdrawal of 
troglitazone or rosiglitazone and during switching to other antihyperglycemic agent.

4.2.5. Psychiatric medication

The most common psychiatric disorders encountered in transplant patients are anxiety, 
depression, mood disorders, behavior problems, and insomnia that are reversible in most 
cases; however, they often require psychotherapy with antidepressants, mood stabilizers, 
anxiolytic agents, or even with antipsychotics. Many of these pharmacons are metabolized 
by enzymes other than CYP3A4 and do not influence the drug-metabolizing activities of 
CYP3A4; consequently, metabolic drug interactions with immunosuppressants cannot be 
expected. Nevertheless, the CYP3A4 inducing or inhibitory properties of some of these psy-
chopharmacons should be considered. The mood stabilizer carbamazepine and valproic acid 
have been clearly evidenced to be able to activate CAR and PXR. The nuclear receptor acti-
vation leads to an increase in transcription of CYP3A4 gene and CYP3A4 metabolic activity 
[134, 135], anticipating decrease of immunosuppressant blood concentrations [136]. To reduce 
the risk of organ rejection, adjustment (increase) of immunosuppressant doses is required 
with continuous monitoring of immunosuppressant blood levels. Furthermore, the CYP3A4 
deinduction process can last for about 2 weeks after cessation of carbamazepine or valproic 
acid [137]; thus, careful monitoring of immunosuppressant blood concentrations during with-
drawal is essential. The comedication with the antidepressant fluvoxamine is contraindicated 
because of its strong inhibitory properties for CYP3A4 substrates and potential drug interac-
tions with ciclosporin/tacrolimus or with sirolimus/everolimus [80, 138, 139]. For psychother-
apeutic agents that are CYP3A substrates (haloperidol, quetiapine, clonazepam, midazolam, 
alprazolam), continuous monitoring of immunosuppressant blood levels is highly recom-
mended to avoid metabolic drug interactions.

4.2.6. Treatment of hyperuricemia

The metabolic drug interactions with ciclosporin/tacrolimus, sirolimus/everolimus, and corti-
costeroids are generally associated with reversible or irreversible inhibition of CYP3A activi-
ties, as well as with transcriptional induction of CYP3A4 and CYP3A5 expression. Clinically 
significant drug interaction occurs during simultaneous therapy with azathioprine (or 6-mer-
captopurine) and allopurinol, the antihyperuricemic agent [140, 141]; however, it involves 
enzyme other than CYP3As. The metabolism of both 6-mercaptopurine and allopurinol is 
catalyzed by xantine oxidase, anticipating metabolic drug interactions and developing serious 
adverse reactions. As a consequence of inhibition of xantine oxidase by allopurinol, myelotox-
icity is evoked by the accumulation of 6-thioguanine-nucleotide metabolites of azathioprine. 
The risk of bone marrow depletion is increased in patients with low thiopurine methyl-trans-
ferase activity. To avoid the serious myelosuppression during treatment of hyperuricemia and 
gout, substantial reduction of azathioprine dose (by at least 50%) is required when allopuri-
nol is given concomitantly, or alternative agents other than allopurinol should be considered 
[142–144].
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4.3. Metabolic drug interactions between immunosuppressants and herb 
components

Pharmacokinetic herb-drug interactions can also significantly influence the outcome of immu-
nosuppressive therapy and long-term graft survival [145]. St John’s wort (Hypericum perfora-
tum) extract and grapefruit juice are well described as modifiers of pharmacokinetic properties 
of ciclosporin and tacrolimus [146–148]. St John’s wort extract is a herbal product for treatment 
of symptoms of mild or moderate depression, including anxiety, fatigue, and sleeping prob-
lems. The extract contains a number of biologically active components, e.g., hyperforin of high 
interest. Hyperforin has a strong affinity for PXR and significantly increases the expression 
and activities of CYP3A4 enzyme, which is involved in metabolism of many drugs [149, 150]. 
Consequently, chronic consumption of St John’s wort extract can decrease the blood concentra-
tions of CYP3A substrates, such as calcineurin inhibitors, mTOR inhibitors, and corticosteroids 
[151–154]. In addition, St John’s wort extract has been reported to induce the expression of 
ABCB1 transporter that reduces the absorption of ABCB1-ligand drugs from the gut. The hyper-
forin contents of commercially available St John’s wort preparations are variables that appear 
to significantly affect the extent of pharmacokinetic interactions [150, 155]. Coadministration of 
ciclosporin with St John’s wort extract has been reported to lead a 40–60% decrease of ciclospo-
rin blood concentrations, increasing the risk of rejection; therefore, substantial dose adjustment 
is required [151, 152, 155–159]. Since clinicians are often unaware of concomitant consump-
tion of herbal supplements, transplant patients should be informed about the drug interaction 
potential of St John’s wort that can endanger the success of organ transplantation.

Concomitant intake of grapefruit (Citrus paradisii) or pomelo (Citrus grandis) has been dem-
onstrated to increase the bioavailability of immunosuppressants [147, 160, 161]. Some com-
ponents of these citrus fruits, bergamottin and naringenin responsible for the bitter taste, 
can inhibit the activities of CYP3A4 and CYP3A5 enzymes both in the intestinal wall and 
in the liver, resulting in significant reduction of first-pass metabolism of CYP3A substrates, 
including ciclosporin and tacrolimus [162–164]. Significant reduction of ciclosporin/tacroli-
mus doses is necessary to avoid the risk of nephrotoxicity or other adverse events associated 
with immunosuppressive therapy. The furanocoumarin bergamottin is a “suicide substrate,” 
namely it is metabolized by CYP3A4 to an epoxid metabolite that covalently binds to and 
inactivates the enzyme [165]. The flavonoid naringenin was found to be a less-potent CYP3A4 
inhibitor than bergamottin [166]; however, during consumption of grapefruit, the inhibitory 
effects of naringenin and bergamottin are added together. Since clear evidence of bergamottin 
content and CYP3A4 inhibitory potential of citruses other than grapefruit and pomelo was 
provided [167], the transplantation centers do not recommend citrus consumption for trans-
plant patients during immunosuppressive therapy.

5. Concluding remarks

Although success of organ transplantation is continuously improving, several short- and 
long-term complications can adversely affect the outcome. One of the most significant factors 
influencing the long-term graft and patient survival is the appropriate immunosuppressive 

Metabolic Drug Interactions with Immunosuppressants
http://dx.doi.org/10.5772/intechopen.74524

425



therapy. Subtherapeutic blood concentrations of immunosuppressive drugs can evoke acute 
or chronic graft injury mediated by immunological mechanisms, whereas overdosing leads to 
over-suppression of the immune system that consequently develops serious infections, as well 
as adverse and even life-threatening side effects. Because of the narrow therapeutic indexes, 
dosing of most of the immunosuppressive agents is applied under careful monitoring of their 
blood concentrations. The knowledge of the potential factors that can modify immunosup-
pressive therapy, as well as pharmacokinetic and metabolic drug interactions, can decrease 
the fluctuation of immunosuppressant blood concentrations, can facilitate to avoid the seri-
ous adverse events, can improve the therapeutic outcome for transplant patients, and can 
reduce the medical costs.

The appropriate and tailored immunosuppressive medication is a great challenge and requires 
careful and continuous attention, because unrecognized simple interactions can induce seri-
ous complications. As such during administratrion of clarithromycin or antifungal agents 
without dose reduction of calcineurin inhibitors or mTOR inhibitors, blood concentrations 
of immunosuppressants can substantially exceed the therapeutic range within some days. 
Without dose modification, a reverse outcome is expected during comedication with anti-
convulsants (valproic acid and carbamazepine) or with rifampicin resulting in subtherapeu-
tic blood concentrations of immunosuppressants and increasing the risk of organ rejection. 
The lack of mycophenolate dose reduction during cessation of ciclosporin or replacement of 
ciclosporin to another immunosuppressant can also evolve development of serious adverse 
reactions. It is anticipated that the special attention and the knowledge of potential drug inter-
actions can prevent the majority of misdosing-induced adverse events.
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