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Abstract BRAF and NRAS are the two most frequent onco-
genic driver mutations in melanoma and are pivotal compo-
nents of both the EGF and FGF signaling network. Accord-
ingly, we investigated the effect of BRAF and NRAS onco-
genic mutation on the response to the stimulation and inhibi-
tion of epidermal and fibroblast growth factor receptors in
melanoma cells. In the three BRAF mutant, two NRAS

mutant and two double wild-type cell lines growth factor re-
ceptor expression had been verified by qRT-PCR. Cell prolif-
eration and migration were determined by the analysis of 3-
days-long time-lapse videomicroscopic recordings. Of note, a
more profound response was found in motility as compared to
proliferation and double wild-type cells displayed a higher
sensitivity to EGF and FGF2 treatment when compared to
mutant cells. Both baseline and induced activation of the
growth factor signaling was assessed by immunoblot analysis
of the phosphorylation of the downstream effectors Erk1/2.
Low baseline and higher inducibility of the signaling pathway
was characteristic in double wild-type cells. In contrast, onco-
genic BRAF or NRAS mutation did not influence the re-
sponse to EGF or FGF receptor inhibitors in vitro. Our find-
ings demonstrate that the oncogenic mutations in melanoma
have a profound impact on the motogenic effect of the activa-
tion of growth factor receptor signaling. Since emerging mo-
lecularly targeted therapies aim at the growth factor receptor
signaling, the appropriate mutational analysis of individual
melanoma cases is essential in both preclinical studies and in
the clinical trials and practice.
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Introduction

Malignant melanoma is characterized by steadily increasing
incidence and dismal prognosis due to its high metastatic po-
tential. This metastatic behavior of melanoma cells relies on
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the interplay of cell migration and proliferation which are in
part regulated by growth factors including EGF and FGF2.

EGF and FGF2, stimulating EGFR and FGFR recep-
tors, respectively [1–6], activate extensively overlapping
downstream signaling cascades [7–10] that are affected by
the two most common oncogenic driver mutations in hu-
man malignant melanoma, namely BRAF and NRAS mu-
tations. BRAF mutation could be identified in 40 to 70 %
of the melanoma cases while NRAS mutation is detected
in 10 to 30 % of the cases [11–17]. EGF and FGF2 as
well as BRAF and NRAS oncogenic mutations activate
the RAS-RAF-MEK-ERK pathway that is linked to cell
growth and inhibition of apoptosis [18, 19], and implicat-
ed in cell differentiation and proliferation [20, 18] and to
migratory processes through the ERK-FAK interplay [21].

Earlier studies showed correlation between EGFR ex-
pression [22] and EGFR gene amplification with tumor
progression [23–25]. However, there is a varying degree
of expression of EGFR in melanoma cells and some cell
lines lack expression [26]. Recently the importance the
EGF-pathway in melanoma and metastasis formation
was supported by a meta-analysis and gene-expression
microarray investigations [27] and EGF was shown to
facilitate melanoma lymph node metastases by affecting
lymphangiogenesis [28].

Normal melanocytes and malignant melanoma cells ex-
press predominantly FGFR1 [29]. Nevertheless an in-
crease in overall GF receptor expression and melanoma
specific FGFR4 expression was detected in malignant
melanoma cells [30, 31]. Furthermore, the expression of
FGFR4 is thought to be a potential prognostic marker for
melanoma [32]. Impaired FGFR1 function in melanoma
cells results in reduced cell proliferation and survival
in vitro and in decreased tumorigenic potential in vivo
[31]. Of note, several loss-of-function mutations in
FGFR2 have been identified in melanoma [33]. While
normal melanocytes do not express FGF2, FGF2 is
expressed in melanoma cells [34] and forced FGF2 ex-
pression resulted in autonomous and increased growth
in vitro but not in increased tumor forming capacity
in vivo [35, 36]. Similarly, inhibition of FGF2 signaling
by either specific neutralizing antibodies or by antisense
oligonucleotides resulted in decreased migration and pro-
liferation in vitro and in prolonged survival time and sup-
pression of tumor growth in animal models [37–39, 29,
40, 31, 41, 34].

In the last few years several novel drugs emerged that
can efficiently target receptor tyrosine kinases [42, 43].
The EGFR inhibitor gefitinib inhibited proliferation of
malignant melanoma cells harboring wild-type BRAF
and NRAS in vitro [44] but failed to show significant
clinical efficacy as a single-agent therapy for unselected
patients withmetastatic melanoma [45]. Erlotinib administered

as single therapy failed to reduce proliferation of melanoma
cells but in combination with bevacizumab, a VEGF-A binding
antibody, the decrease in proliferation was significant in vitro
and in vivo [46]. Further, the pan-EGFR tyrosine kinase inhib-
itor canertinib (PD183805, CI-1033) was shown to be effec-
tive in inhibiting proliferation in vivo and tumor growth
in vitro in malignant melanoma harboring wild-type BRAF
and NRAS [47]. The irreversible EGFR inhibitor pelitinib
(EKB-569) was efficient against hepatocellular carcinoma
cells in vitro [48] and against gefitinib- and erlotinib-
resistant non-small cell lung cancer cells [49]. Furthermore it
delivered clinical benefit in combination with temsirolimus in
a phase I study [50]. However, effect of pelitinib onmelanoma
cells is currently unexplored.

FGF receptor inhibitors are also promising treatment
modalities for melanoma patients. Antitumor effect of
FGFR inhibitors (SU5402 and PD166866) in combination
with BRAF inhibitors was shown in vitro and in vivo in a
set of BRAF mutant melanoma cells [51]. The small mol-
ecule multitarget kinase inhibitor BIBF-1120 acting on
FGF, VEGF and PDGF receptors inhibited the prolifera-
tion of a large panel of tumor cells including kidney, pha-
ryngeal, ovary, lung, colon, pancreatic cancer and glioma
cells in vitro and antitumor effect in vivo [52–54]. Simi-
larly ponatinib (AP24534), with affinity to FGFR but to
VEGFR and ABL as well, decreased proliferation of
breast, lung, gastric, endometrial, bladder, colon cancer
cells and reduced growth of tumor xenografts and
prolonged survival of host mice in vivo [55, 53, 56].
BGJ-398, a highly selective inhibitor for FGFRs effective-
ly reduced proliferation of bladder cancer cells in vitro
and reduced the amount of circulating tumor cells and
lymph node as well as distant metastases in vivo [57,
58]. Recently, a phase II clinical study has started with
the FGFR inhibitor BGJ-398 in combination with the
RAF inhibitor LGX818 on BRAF-mutant advanced mel-
anoma (http://clinicaltrials.gov; NCT01820364). The
FGFR selective inhibitor AZD-4547 reduced the prolifer-
ation of breast cancer, multiple myeloma, acute myeloid
leukemia and myeloproliferative syndrome-derived cells
and demonstrated antitumor effect on colon cancer xeno-
grafts in vivo [53, 59]. Although EGF and FGF receptor
inhibitors show promising results in a great variety of
cancers, their effect on melanoma cells are quite
unexplored.

Altogether, EGF-FGF2 signaling plays an important
role in melanoma progression and the most common on-
cogenic mutations in melanoma result in the constitutive
activation of the EGF-FGF signaling, downstream of the
receptors. The importance of the EGF-FGF signaling cas-
cades is underlined also in the involvement of the ac-
quired resistance against the recently introduced V600E
BRAF inhibitor vemurafenib [60, 61]. Even so, the effect
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of these oncogenic mutations on the activation and inhi-
bition of EGF and FGF receptors is widely anticipated
nevertheless not yet systematically investigated.

Accordingly our aim was to evaluate the in vitro ef-
fect of BRAF and NRAS mutations on the activation
and inhibition of EGFR and FGFR signaling in human
melanoma cells.

Methods

Compounds/Drugs

The following compounds were used in the experiments:
EGF (human recombinant; Life Technologies, Carlsbad,
CA), FGF2 (human recombinant; Life Technologies,
Carlsbad, CA), the FGFR inhibitors ponatinib, BGJ-398,
BIBF-1120, AZD-4547, the EGFR inhibitors gefitinib, er-
lotinib, canertinib, pelitinib (all from Selleckchem,
Housten, TX, USA).

Cell Lines

Seven human melanoma cell lines were used in this study.
A2058, A375 and MEWO as well as CRL-2066 small cell
lung carcinoma and CRL5885 lung adenocarcinoma cell
lines were from ATCC. The M24met melanoma line,
established from an invaded lymph node of a nude mouse
[62], was kindly provided by B. M. Mueller (Scripps Re-
search Institute, La Jolla, CA). The HT199 melanoma cell
line was developed in the National Institute of Oncology,
Hungary [63]. Cell lines VM-15 and VM-47 were
established at the Institute of Cancer Research at Medical
University of Vienna [64]. Cell cultures were maintained
in DMEM media (Lonza, Switzerland; with 4500 mg/dm3

glucose, pyruvate and L-glutamine) supplemented with
10 % fetal calf serum (Lonza, Switzerland) and 1 %
penicillin-streptomycin-amphotericin (Lonza, Switzer-
land) in tissue culture flasks at 37C in a humidified 5 %
CO2 atmosphere. Cells were kept in media with 5 % FCS
for 24 h before GF treatment.

Mutational Analysis

After isolating DNA from the cell lines and performing
PCR reaction, samples were purified with Applied
Biosystems BigDye® XTerminator™ Purification Kit
and mutations were verified through sequencing on ABI
3130 genetic Analyser System with BigDye® Terminator
v1.1 Kit.

Quantitative Real-Time PCR

Messenger RNA levels of EGFR and FGFRs were de-
termined by qRT-PCRs. In a MicroAmp Optical 96-well
Reaction Plate (Applied Biosystems) 1 μl cDNA and
11 μl TaqMan qRT-PCR Master Mix containing the ap-
propriate TaqMan probe were mixed. TaqMan probes
used were as follows: FGFR1 - Hs00915135 m1,
FGFR2 - Hs01552926 m1, FGFR3 - Hs00179829 m1,
FGFR4 - Hs00608751 g1, EGFR - Hs01076078 m1,
GAPDH - Hs99999905 m1. PCR was performed in an
ABI Pr i sm 7000 SDS Thermocycle r (Appl ied
Biosystems) and fluorescence was measured after every
cycle. As references for normalization the housekeeping
gene GAPDH was used. Additionally, the size of PCR
products was verified by agarose gel electrophoresis.
Each preparation and measurement was performed
twice.

Sulforhodamine B (SRB) Proliferation Assay

SRB assay was performed to analyze cell proliferation,
based on the measurement of cellular protein content.
Briefly, melanoma cells were plated in the inner 60 wells
of a 96-well plate and left 24 h to adhere. After 48 h
treatment with EGF and FGF2 (50 ng/ml each) or both,
cell monolayers were fixed with 10 % trichloroacetic acid
and stained for 15 min with SRB. Excess dye was re-
moved by repeated washing with 1 % (vol/vol) acetic
acid, and then the protein-bound dye was dissolved in
10 mM Tris and OD determined at 570 nm using a mi-
croplate reader (EL800, BioTec Instruments, USA). Pro-
liferation data are averages of six independent experi-
ments and effect of treatment was expressed as control
to treated ratio.

Videomicroscopy

Videomicroscopy measurements were carried out as de-
scribed previously [65, 66]. Briefly, melanoma cells were
plated in the inner 8 wells of 24-well plates (Corning
Incorporated, USA) in DMEM medium supplemented
with 10 % FCS. After the overnight cell attachment, cul-
ture medium was changed to CO2-independent medium
(Gibco-BRLLife Technologies, UK) supplemented with
5 % FCS and 4 mM glutamine. The reduction of evapo-
ration from the inner wells was achieved by filling the
outer wells with medium. Cells were kept in a custom
designed incubator built around an inverted phase-
contrast microscope (World Precision Instruments, USA)
at 37 °C and room ambient atmosphere. Images of 3
neighboring microscopic fields were taken every 5 min
for 1 day before and 2 days after the treatment with
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EGF and FGF2 (50 ng/ml each), or both. For migration
data the captured phase contrast microscope pictures were
analyzed individually with a cell-tracking program en-
abling manual marking of individual cells and recording
their position parameters into data files. The parameter
migrated distance is calculated by averaging for each cell
the displacement for the first 24 h interval after treatment,
in two independent experiments and 3 microscopic fields.
Cell proliferation was also assessed by counting the num-
ber of cell divisions in the first 2 days after treatment and
normalized to the initial number of cells on the first pic-
ture taken after the treatment. For proliferation data two
independent experiments and 3 microscopic fields were
evaluated.

Immunoblot Analysis

Immunoblot analysis was performed to quantify the phos-
phorylation of Erk1/2 and S6 proteins, two downstream
components of the RAS pathway. Cells were plated in six-
well dishes and maintained as mentioned above. Follow-
ing 2 days of incubation time cells were treated in two
independent replicates for 1 h with either EGF or FGF2
(50 ng/ml each) or both and collected in RIPA Buffer
(Thermo Scientific) supplemented with 1 % Halt Protease
Inhibitor Single-Use Cocktail (Thermo Scientific). Total
protein concentrations were measured using Pierce BCA
Protein Assay kit (Thermo Scientific). Following denatur-
ation, equal amounts of protein were loaded on SDS-
PAGE (12 %) and transferred to nitrocellulose membrane
(Whatman). Incubation with anti p-Erk/Erk, anti p-S6/S6
and as loading control anti tubulin (Cell Signaling; poly-
clonal, rabbit) was performed overnight at 4 °C in a dilu-
tion of 1:2000. Secondary, HRP labeled anti-rabbit anti-
body was applied 1:2000 for 0.5 h at room temperature.
Visualization was achieved with Amersham ECL

Advance Western Blotting Detection kit (GE HealthCare).
Activation of signaling was quantified as the ratio of
phosphorylated and total protein densitometry measure-
ments using ImageJ software.

Statistics

To determine statistical differences between groups ANOVA
and post hoc Dunnett’s Multiple Comparison test was comput-
ed. Statistical significance was determined at p<0.05. Statistical
analyses were performed with GraphPad Prism 5 (GraphPad
Software Inc, USA, San Diego, CA).

Results

Mutational Analysis

Mutational status of the examined cell lines was con-
firmed by direct sequencing. The most common V600E
mutation in the BRAF gene and wild-type NRAS was
detected in A375, A2058 and HT199 cells. The VM-15
and M24met cell lines were found BRAF wild-type and
NRAS mutant with Q61K and Q61R mutations, respec-
tively. Two cell lines, MEWO and VM-47 carried no mu-
tations in these two genes.

Expression of Growth Factor Receptors

To see the whether a treatment with EGF and FGF has the
potential to affect the examined cells, expression of EGF
and FGF receptors were investigated by quantitative real-
time PCR. Transcription of EGFR, FGFR1 and FGFR4
was confirmed in each of the investigated cell lines
(Fig. 1). Interestingly, FGFR2 and FGFR3 were not
expressed in the two NRAS mutant cell lines. Of note,

Fig. 1 Expression of EGFR1 and
the four FGFR in melanoma cell
lines measured by qRTPCR
relative to GAPDH. Colors blue,
red and green indicate BRAF,
NRASmutation and wild-type for
these genes, respectively. EGFR,
FGFR1 and FGFR4 transcripts
are present in all cell lines
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on average the lowest expression of growth factor recep-
tors was found in the double wild-type cells.

Effect of EGF/FGF2 Treatment on Proliferation

Effect of EGF and/or FGF2 treatment on proliferation and
cell viability was measured by videomicroscopy and SRB
assay, respectively, essentially yielding comparable re-
sults. Importantly, both BRAF and NRAS activating mu-
tations resulted in elevated levels of proliferation com-
pared to the double-wild-type cells (Supplementary
figure 1A). Proliferation of the double wild-type cell line
VM-47 was significantly increased upon GF treatment.
There was no significant change in the proliferation of cells with
BRAF or NRAS oncogenic mutations (Fig. 2a–c).

Effect of EGF/FGF2 Treatment on Cell Morphology
and Migration

Next, the effect of addition of EGF and/or FGF2 on cell
morphology and migrat ion was invest igated by
videomicroscopy. Clear morphological changes could be
observed after EGF or FGF2 treatment in the double type
cell lines and the majority of cells obtained an elongated
morphology. A modest alteration was found in NRAS
mutant cells following the addition of FGF2 (Fig. 3a). A
more profound response was found in cell migration as
compared to proliferation (Fig. 3b). Remarkably, without
any treatment both BRAF and NRAS activating mutations
resulted in elevated levels of migration compared to
double-wild-type cells (Supplementary figure 1B). Signif-
icant increase in cell migration was observed in the two
double wild-type cell lines following GF treatment. In
both cases the increase in migratory activity was higher
after EGF treatment as compared to FGF2 treatment. Im-
portantly, the combined treatment resulted in greater in-
crease than treatment with EGF or FGF2 alone. Signifi-
cant increase in migration was measured after combined

and FGF2 treatment in VM-15 and M24met NRAS mu-
tant cells, respectively. Of note, this increase was consid-
erably smaller than those in double wild-type cells. In
average, NRAS mutant cells showed a modest increase
in migration in response to FGF2 or combined growth
factor treatment, whereas BRAF mutant cells failed to
show changes in cell migration after growth factor treat-
ment (Supplementary figure 2).

�Fig. 2 Effect of EGF and/or FGF2 treatment on cell proliferation
measured by videomicroscopy and SRB assay. Melanoma cells
harboring oncogenic BRAF (a), NRAS (b) mutations and wild-type for
these genes (c). Evaluation of changes in cell proliferation by
videomicroscopy or SRB assay yielded comparable results. No changes
in proliferation were observed in BRAF and NRAS mutant cells. In
contrast, double wild-type VM-47 cells showed significantly increased
proliferation upon EGF and/or FGF2 treatment. Colors blue, red and
green indicate BRAF, NRAS mutation and wild-type, and striped and
plain columns stand for videomicroscopy and SRB assay, respectively.
Data shown as average ± SEM are results of more independent
measurements, 6 in case of SRB assays and 4 in case of
videomicroscopy measurements. Asterisks indicate significance of
p<0.05 by ANOVA and Dunnett’s post hoc test. (E = EGF; F = FGF2;
E + F = EGF and FGF2 treatment)
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Activation of the EGFR and FGFR Pathway

Activation of the growth factor receptor pathway was
measured by the immunoblot investigation of the phos-
phorylation of the downstream effectors Erk1/2.

BRAF and NRAS oncogenic mutations resulted in a
2.2 and 2.6 times higher phosphorylation of Erk1/2, as
compared to wild-type cells, respectively (Fig. 4a). Treat-
ment with growth factors resulted in a notably higher
level of phosphorylation of Erk1/2 in double wild-type

cells and in a modest elevation of phosphorylation in ei-
ther BRAF or NRAS mutant cells (Fig. 4b). A 1.4 to 2.3
fold increase in phosphorylation of Erk1/2 was measured
in double wild-type cells a. In contrast, the highest in-
crease in the mutant cells was only about 20 % in the
phosphorylation of Erk1/2 measured in mutant cells after
GF treatment (Fig. 4). Altogether, the alteration of Erk1/2
phosphorylation measured in cells with oncogenic muta-
tions was rather modest when compared to the double
wild-type cells’ response.

Fig. 3 Changes in morphology
and migratory activity after EGF
and/or FGF2 treatment.
Morphological changes following
24 h treatment in melanoma cells
(a). The most striking effect can
be seen in the double with type
cells where the majority of cells
obtain an elongated morphology
upon treatment. A modest
alteration was found in NRAS
mutant cells following the
addition of FGF2. Effect of EGF
and/or FGF2 treatment on
migration of melanoma cells
measured by videomicroscopy
(b). Robust effect has only been
found in the double wild-type
cells. NRAS mutant cells
responded to FGF2 or EGF and
FGF2 combined treatment with a
modest increase in migration.
Colors blue, red and green
indicate BRAF, NRAS mutation
and wild-type. Data shown as
average ± SEM and results of 3
independent measurements.
Asterisks indicate significance of
p<0.05 by ANOVA and
Dunnett’s post hoc test. (E = EGF;
F = FGF2; E + F = EGF and
FGF2 treatment)
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Pharmacological Inhibition of EGFR and FGFR

In order to examine the mutation dependence of melanoma cells
to growth factor receptor inhibition, four EGFR and four FGFR
inhibitors were tested on the seven melanoma cell lines with
BRAF, NRAS mutation or wild-type for these genes. The treat-
ment with EGFR inhibitors failed to show mutation dependence
in melanoma cells (Fig. 5). However, the two irreversible inhib-
itors (canertinib and pelitinib) showed higher growth inhibiting
potential compared to the reversible inhibitors (gefitinib and er-
lotinib). Similarly, the effect of FGFR inhibitors on proliferation
of melanoma cells was independent of the BRAF and NRAS
mutational status of the melanoma cells (Fig. 6).

Discussion

The majority of novel targeted therapies are inhibiting
the growth factor receptors or their downstream

signaling cascades. Importantly, the major oncogenic
driver mutations in melanoma are part of these signaling
pathways. Accordingly, we determined the mutation de-
pendent activation and inhibition of GF receptor signal-
ing cascades. Reflecting the prevalence of these muta-
tions we included three BRAF-, two NRAS-mutant and
two double wild-type cell lines. In line with the finding,
that an increase in the EGFR gene copy number possi-
bly correlates with tumor progression [24, 25] the ma-
jority of melanoma cell lines are EGFR positive [26].
Expression of a variety of FGFR receptors was demon-
strated in recent studies on melanoma cell lines [51,
67]. Interestingly, in our study none of the NRAS mu-
tant cell lines showed FGFR2 and FGFR3 expression,
and of particular importance wild-type cell lines showed
the lowest level of GF receptor expression.

Clinical studies indicate that BRAF or NRAS mutant
melanoma has a worse prognosis [68, 69]. Of note, in
our in vitro assays we found that BRAF and NRAS

Fig. 4 Effect of oncogenic mutations and EGF and/or FGF2 treatment on
the phosphorylation of GF receptor pathway effectors Erk1/2 measured
by immunoblot analysis. Quantification of baseline (a) and induced
activation (b) of Erk1/2 and representative immunoblots (c). Melanoma
cells with BRAF or NRAS oncogenic mutations show higher baseline

activation and lower inducibility of Erk1/2. Colors blue, red and green
indicate BRAF, NRAS mutation and wild-type for these genes. Data
shown as average of at least 3 independent measurements. (WT =
double wild-type; C = control; E = EGF; F = FGF; EF = EGF and FGF
treatment)
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mutant melanoma cells display higher proliferation and
migration compared to melanoma cells lacking these
driver mutations. Our finding suggests that these
in vitro biological characteristics may correlate with
the dismal clinical course.

Although the correlation of BRAF mutation and
downstream activation of the GF receptor pathway has
not been demonstrated in clinical studies [70, 71], our
in vitro experiments demonstrate that BRAF or NRAS
mutant cells display higher phosphorylation of the
downstream effectors Erk1/2, surrogate marker of the
activation of the RAS/RAF/MEK pathway. According
to the high baseline phosphorylation of Erk1/2 in BRAF
and NRAS mutant cells, the treatment with growth fac-
tors resulted only in a modest activation of the down-
stream targets. In contrast, a notably higher level of
phosphorylation of Erk1/2 was measured after the treat-
ment with GFs in wild-type cells.

The responsiveness of wild-type melanoma cells to-
wards GF treatment was seen not only in the

phosphorylation of the downstream target of the RAS/
RAF/MEK but also in proliferation and cell migration.
The highest significant increase in cell migration was
found in the double wild-type cell lines VM-47 and
MEWO following either EGF or FGF2 treatments. Of
note, FGF2 treatment increased the migration of NRAS
mutant cells, whereas BRAF mutant cells failed to show
changes in cell migration after either growth factor
treatment. Interestingly, more profound migratory re-
sponse was found when compared to proliferation. The
comparable results from the videomicroscopy and pro-
tein measurement-based cell viability assay demonstrate
that cell proliferation can be estimated by viability as-
says in this setting. A significant increase in prolifera-
tion was found in the double wild-type cell line VM-47,
whereas MEWO cells, the other wild-type cell line,
failed to show increase in proliferation. The smaller re-
sponsiveness of MEWO cells, compared to VM-47 cells
could be explained with the NF1 loss, an intrinsic in-
hibitor of RAS activation, in MEWO cells that can lead

Fig. 5 Proliferation inhibition of
EGFR inhibitor treatment on
melanoma cells measured by
SRB assay. There was no
mutation dependent difference in
the sensitivity of cell lines in any
of the four different inhibitors.
CRL-5885 lung adenocarcinoma
cells were used as positive
control. Colors blue, red and
green indicate BRAF, NRAS
mutation and wild-type for these
genes, respectively. Data shown
as average ± SEM of at least 10
repeats in 2 independent
measurements
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to the smaller sensitivity to the external activation [72].
In line with the lack of further activation of the EGFR
and FGFR pathway, there was no remarkable increase in
the proliferation or migration of cells with BRAF or
NRAS oncogenic mutations.

Despite differences in the response of melanoma cells
with different oncogenic mutations there was no similar
mutation dependence in their sensitivity to EGFR and
FGFR inhibitors. Our findings are in line with previous
studies where inhibition of EGFR failed to show antitu-
mor effect in melanoma cells in vitro [46] and in a
clinical trial [45]. Similarly, inhibition of FGFR-VEGFR
had minimal effect on melanoma cells in patients [73]. The
previously described proliferation inhibiting effect of the
EGFR inhibitor canertinib but not of gefitinib was recapitulat-
ed in melanoma cells harboring wild-type BRAF and NRAS
and lacking ErbB2 gene amplification [44, 47]. Similarly to
previous results where treatment with FGFR inhibitors
SU5402 and PD166866 showed anti-melanoma effect in a
number of melanoma cell lines predominantly with BRAF

mutation [51], a clear antiproliferative effect was observed
after the treatment with FGFR inhibitors at higher doses.

In conclusion, we demonstrated that in NRAS and
BRAF mutant melanoma cells the activation of growth
factor receptor signaling is essentially different com-
pared to wild-type cells. In contrast, the effect of EGFR
and FGFR inhibition seems to be rather independent
from BRAF and NRAS oncogenic mutations. However,
in order to establish the predictive role of oncogenic
mutations in molecularly targeted therapy of melanoma,
appropriate mutational analysis of melanoma cases is
indispensable in both preclinical studies and in clinical
trials and practice.
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Fig. 6 Proliferation inhibition of
FGFR inhibitor treatment on
melanoma cells measured by
SRB assay. There was no
mutation dependent difference in
the sensitivity of cell lines in any
of the four different inhibitors.
CRL-2066 small cell lung
carcinoma cells were used as
positive control. Colors blue, red
and green indicate BRAF, NRAS
mutation and wild-type for these
genes, respectively. Data shown
as average ± SEM of at least 10
repeats in 2 independent
measurements
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