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6 ABSTRACT: The enzyme family harboring the post-translation-
7 ally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO)
8 catalytic residue comprises both aromatic amino acid ammonia-
9 lyases (ALs) and 2,3-aminomutases (AMs). The structural origin
10 of the different functions and the role of the inner loop region in
11 substrate binding are not fully understood. Here, we provide the
12 three-dimensional structures for Petroselinum crispum phenyl-
13 alanine AL (PcPAL) with fully resolved inner loops in a
14 catalytically competent conformation. Using molecular modeling,
15 we demonstrate that in both ALs and AMs of eukaryotic origin,
16 just a small opening of the inner loop is sufficient for ligand egress.
17 Furthermore, we show that ligand-binding tunnels are analogous to
18 eukaryotic MIO- enzymes and that the critical initial part of these
19 tunnels is present across the whole enzyme family. Engineering of these binding tunnels converts an (R)-AM to a highly selective
20 (S)-β-AL thus establishing a nonclassified enzyme function.
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22 mechanism-based inhibition, substrate-binding dynamics, tunnel engineering

23 ■ INTRODUCTION

24 The 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO)-con-
25 taining class I lyase-like enzyme family (MIO enzymes)
26 constitutes two functionally diverse but structurally related
27 enzyme classes, the aromatic amino acid ammonia-lyases
28 (ALs) and the aromatic amino acid 2,3-aminomutases (AMs).1

29 ALs catalyze the reversible ammonia elimination from
30 histidine, phenylalanine, or tyrosine (HALs, PALs, and

f1 31 TALs, respectively; Figure 1a), using a special post-transla-
32 tionally formed residue, MIO, as the catalytic electrophile
33 (Figure 1). AMs catalyze, also with the aid of MIO, the
34 interconversion between α- and β-phenylalanine (β-Phe) or α-
35 and β-tyrosine [phenylalanine aminomutases (PAMs) and
36 tyrosine aminomutases (TAMs), respectively; Figure 1b].
37 The physiological functions of MIO enzymes are diverse and
38 constitute key roles in several metabolic pathways. In most
39 kingdoms of living organisms, histidine ALs (HALs) play a
40 crucial role in histidine metabolism.2,3 Further, MIO enzymes
41 produce secondary metabolites such as antibiotics4 or
42 pigments5 in bacteria and fungi. In plants, phenylalanine ALs
43 (PALs) catalyze the carbon flow from the shikimate pathway
44 to the phenylpropanoid pathway, leading to an enormous array
45 of secondary metabolites such as lignins or flavonoids.6 Due to

46the fundamental role of the phenylpropanoid pathway in plant
47metabolism, PAL is of key current interest.6

48The application possibilities of MIO enzymes are manifold,
49ranging from synthetic biotransformations to human therapy.
50The native promiscuity and wide substrate scope of numerous
51MIO enzymes expedite their use as biocatalysts on laboratory
52as well as on industrial scale.1,7 The enzyme substitution
53therapy with PAL for the treatment of phenylketonuria
54represents a further extension of applications.8 In 2018, the
55FDA approved the first such treatment under the name
56Palynziq by BioMarin Pharmaceutical Inc.9 Further develop-
57ment and fine-tuning of such important applications require a
58comprehensive understanding of the reaction mechanism and
59of the structure−function relationships of MIO enzymes.
60Different reaction mechanisms proposed for the AL reaction
61suggested different roles for the MIO electrophile (Figure 1a).
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62 The N-MIO mechanism postulated an N-MIO intermediate by
63 covalent bond formation between the amino group of the
64 substrate and the exocyclic methylene carbon atom of the MIO
65 electrophile.10 The FC mechanism hypothesized an FC
66 intermediate resembling the σ-complex involved in FC
67 reactions by covalent bond formation between the aromatic
68 moiety of the substrate and the exocyclic methylene carbon
69 atom of the MIO electrophile.11,12 Both the N-MIO and
70 Friedal−Crafts (FC) mechanisms suggested that a tyrosine
71 residue (TyrA in Figure 1) plays the role of the catalytic base
72 responsible for removing the pro-S hydrogen (Hs) as a proton
73 from the β position during the elimination reaction.13

74 Different reaction routes in the PAM reaction result in
75 mirror-image enantiomers of β-Phe (Figure 1b). Isotope
76 labeling studies revealed that eukaryotic PAMs convert L-α-
77 phenylalanine (Phe) to enantiopure (R)-β-Phe via the
78 “retention of conf iguration” route14 (referring to the pro-R β-
79 hydrogen of the substrate, depicted in green in Figure 1b). In
80 contrast, prokaryotic PAMs transform Phe to enantiopure (S)-
81 β-Phe via the “inversion of conf iguration” route15 (Figure 1b).
82 In both AM routes, the pro-R β-hydrogen is shuffled as a
83 proton by TyrA to the α position, whereas the amino group
84 transfer is mediated by the MIO group. Independently from
85 their origin, TAMs exhibit no strict preference toward either
86 enantiomers of β-tyrosine (β-Tyr).4,16 So far, all hypotheses on
87 the mechanisms for the AM reactions postulated the existence
88 of the unsaturated carboxylic acid intermediate1 (e.g., (E)-
89 cinnamate (CA), the respective intermediate for PAMs).
90 Another common feature of all AM reactions is the release of
91 this unsaturated carboxylic acid intermediate as a by-
92 product,17,18 presumably as a result of the intermediate’s
93 egress from the active site prior to re-amination. Notably, this
94 intermediate is equivalent to the product of the AL reaction.
95 In all MIO enzymes (Table S1) TyrA is present in a
96 conserved sequence motif part of a flexible inner loop covering
97 the active site (Table S2 shows a sequence alignment of the

98region). The catalytically competent conformation of the inner
99loop is characterized by the proper spatial proximity of TyrA to
100 f2MIO (∼12−13 Å, Figure 2). The representative crystal

101structures of each class of MIO enzymes3,4,8,18−33 show
102clear-cut electron densities for the well-ordered inner loop
103conformation in the so-called “loop-in” state (Figures 2, S1 and
104S2), except for eukaryotic PALs.8,20,21,32,33 The lack of proper
105electron density data hindered modeling the loop region in the
106crystal structures of PAL from the yeast Rhodotorula
107toruloides.8,20 The inner loop is also absent in our recent
108structure of Petroselinum crispum PAL (PcPAL, I460V mutant)
109despite the presence of p-methoxy cinnamic acid ligand in the
110active sites.33 In the first structure of PcPAL, a “loop-out”
111conformation was assumed for the inner loop21 (Figure 2);
112however, this conformation proved to be catalytically

Figure 1. Catalytic activity and key structural features of MIO enzymes. The AL reaction (a) involves a covalent intermediate. In the proposed N-
MIO intermediate, a bond is formed between the amino group of the substrate and the exocyclic methylene carbon atom of the MIO electrophile.
In the alternative hypothetic Friedel−Crafts (FC) intermediate, the MIO electrophile forms a σ-complex with the phenyl ring of the substrate. In
different AM reactions (b), after forming an amino−MIO complex and a cinnamate, the re-amination steps result in different enantiomers of the β-
amino acid via “inversion of configuration” or “retention of configuration” routes. The routes are named depending on whether the configuration of
the pro-R β-hydrogen (in green) of the starting L-Phe is formally retained or inverted. During the AM reactions, the pro-S β-hydrogen (in orange) is
shifted to the α-carbon atom.

Figure 2. Spatial proximity of TyrA to MIO in the “loop-in” state
(yellow; in structure 6F6T) of the inner loop within PcPAL allows the
catalytic activity. In the “loop-out” state assumed for PcPAL
previously (magenta; in structure 1W27),30 however, TyrA lies far
away from the active site and cannot fulfill the role of being the
catalytic base.
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113 inactive.34 In the recent structure of Sorghum bicolor PAL, the
114 inner loop of chain A was resolved in a “loop-in” state,32 but
115 modeling of this region is still ambiguous due to the low
116 resolution (2.5 Å) and weak electron densities for the side
117 chains in the inner loop region.
118 The inner loop in PAM is rendered more rigid than the one
119 in PAL by a combination of salt bridges35 and hydrophobic
120 interactions.18 Computational and experimental results sug-
121 gested the difference in flexibility of the inner loop to be the
122 key structural feature distinguishing ALs from AMs.18,35 Thus,
123 it was proposed that the more rigid loop in PAM restrained the
124 CA and the amino-enzyme (NH2-MIO) intermediates within
125 the active site during isomerization. Mutating several hydro-
126 phobic residues of the inner loop in the (R)-selective Taxus
127 canadensis PAM (TcPAM) to their more hydrophilic
128 equivalents in PcPAL resulted in an AL phenotype, and
129 computational results demonstrated that the mutations also
130 lowered the potential mean force required for loop opening.18

131 However, both studies assumed that a transition from the
132 “loop-in” state of the inner loop to the “loop-out” state (Figure
133 1) occurs during the catalytic cycle.18,35 Furthermore, in an
134 independent study, the reverse experiment aiming to switch
135 the AL to AM activity was unsuccessful.36

136 Currently, strong structural evidence for the catalytic
137 mechanism and substrate binding is lacking for eukaryotic
138 PALs being crucial in plant metabolism. Therefore, the first
139 goal of this study was to determine the catalytically competent
140 structure of a eukaryotic PAL (PcPAL). The second goal of
141 this study was to investigate the dynamic behavior of a
142 eukaryotic PAL and a PAM during substrate binding/product
143 release, with special focus on the conformational changes of
144 the inner loop during the process. Subsequent mutagenesis of
145 critical access tunnel residues aimed to alter the activity and/or
146 stereopreference of PALs and PAMs.

147 ■ RESULTS

148 X-ray Structures of PcPAL with Catalytically Com-
149 petent Inner Loop Conformation. The crystal structures of
150 PcPAL have been solved in apo form (PDB ID: 6H2O) and in
151 complex with previously characterized potent phosphonic acid
152 inhibitors (R)-(1-amino-2-phenylethyl)phosphonic acid [(R)-
153 APEP, PDB ID: 6HQF] and (S)-(1-amino-2-phenylallyl)-

f3 154 phosphonic acid [(S)-APPA, PDB ID: 6F6T]37 (Figure 3).
155 Table S3 lists the details of data collection and structure
156 refinement.
157 Co-crystallization with 10-fold excess of (R)-APEP or (S)-
158 APPA resulted in full occupancy of the active sites of PcPAL
159 (Figure 3a,b). In the structures, both (R)-APEP and (S)-APPA
160 are covalently attached to the MIO residue by their amino
161 group, despite the reversibility of the inhibition37 (Figure 3c:
162 N−C distances are 1.3 and 1.4 Å for (R)-APEP and (S)-APPA,
163 respectively). The inhibitor (R)-APEP is the phosphonic acid
164 equivalent of the natural substrate L-Phe; hence, the binding
165 conformation and the reaction mechanism of the AL reaction
166 with L-Phe may be inferred from this crystal structure. The
167 binding conformation is equivalent to the N-MIO intermediate
168 state proposed for the reaction (Figure 1a). As such, these
169 structural data provide the first direct experimental evidence
170 for the N-MIO mechanism for PALs (Figure 1a). Furthermore,
171 the experimental evidence shows (R)-APEP to be a
172 mechanism-based inhibitor that mimics an intermediate state
173 of the reaction. However, the elimination reaction from this

174inhibitor cannot occur, as the essential base TyrA (Y110, Figure
1753) forms a salt bridge with the phosphonic acid moiety.
176The clear-cut electron densities in the structure complexed
177with the inhibitors confirm the absolute configuration
178determination of the (S)-APPA inhibitor (Figure 3b) and
179reveal a surprising enantiomer preference switch generated by
180the methylidene group in (R)-APEP at the β-position (Figure
1813b).37 Inferring D-Phe binding from this structure, we propose
182that the positioning of the β-carbon atom compared to TyrA
183(Y110, Figure 3c) is the most important structural feature
184determining enantioselectivity.
185PcPAL, like all MIO enzymes, functions as a homote-
186tramer.38 Each of the four active sites of the tetramers is
187formed by three monomers,3 and the burial of large
188hydrophobic surfaces between the subunits is the driving
189force of tetramerization. In all of the crystal structures reported
190here, PcPAL crystallized in the same unit cell as in the
191previously reported structures.21,33 The asymmetric unit
192consists of two monomers, and the functional homotetramer
193is generated by applying crystal symmetry operations. The
194overall protein fold well represents the usual MIO enzyme
195fold;3,4,8,18−33 however key details are also revealed by the
196present structures. Inhibitor binding decreased the flexibility of
197the inner loop and the experimental electron density maps,
198allowing the creation an unequivocal structural model of the
199 f4inner loop region as well (Figure 4).
200The inner loop region (106−126, Table S2) directly caps
201the active site, encompasses the catalytic TyrA (Y110), and is
202stabilized upon ligand binding. In the apo structure, electron
203densities for the inner loop were absent, presumably due to the
204higher flexibility of the loop (Figure 4a). Binding of the
205inhibitors (R)-APEP and (S)-APPA resulted in structures with

Figure 3. Covalent binding of mechanism-based phosphonic acid
inhibitors of PcPAL. (a,b) Clear electron densities indicate covalent
bonds between the catalytic MIO residue of PcPAL and the ligands
(R)-APEP (a) and (S)-APPA (b). (c) Comparative overlay of the
inhibitor-binding modes of PcPAL. The distance between the amino
group of the inhibitors and the exocyclic methylidene group of the
MIO residue is characteristic of a covalent bond: 1.3 Å in (R)-APEP
and 1.4 Å in (S)-APPA. Electron densities are shown from the 2Fo−
Fc maps, contoured at 1σ level.
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206 clearly visible electron densities for the inner loop, allowing
207 accurate modeling of the full inner loop for the first time for a
208 eukaryotic PAL (Figure 4b,c). In this inner loop conformation,
209 the TyrA−MIO distance (13.2 and 13.1 Å, Figure 4b,c) enables
210 the action of TyrA as the catalytic base and therefore can be
211 considered a catalytically competent conformation. This
212 conformation of the inner loop resembles the “loop-in” state
213 seen in other MIO enzymes (structural overlay shown in
214 Figure S2a). Importantly, no experimental data support the
215 previously proposed “loop-out” state,21 rendering the func-
216 tional relevance of this conformation questionable. The strong

217interactions of the phosphonic acid moiety of the reaction
218intermediate mimicking analogues with multiple active site
219residues likely contribute to the stabilization of the TyrA-
220containing inner loop, as no such effect was observed even in
221the PcPAL structure complexed with a cinnamic acid analogue,
222enabling less stabilizing interactions.33

223Inner Loop Dynamics in PcPAL and TcPAM during
224Substrate Access and Product Release. In MIO enzymes,
225it was often assumed that the inner loop undergoes large
226conformational changes and fully opens approaching the
227hypothetical “loop-out”21 conformation upon product re-
228lease.18,35 The crystallographic experimental evidence, how-
229ever, only proved unambiguously the existence of the “loop-in”
230state in PcPAL. Additionally, inner loop flexibility was
231suggested to switch between PAL and PAM activities.18 The
232role of inner loop motions in distinguishing PAL and PAM
233reactions was studied by modeling the loop motions of a
234eukaryotic PAL and a eukaryotic PAM during substrate
235binding and product release.
236The structures of PcPAL, with the complete inner loop in a
237catalytically competent “loop-in” state, and the available
238structures of TcPAM enabled us to set up random acceleration
239molecular dynamics (RAMD)39 simulations. As RAMD
240requires no prior assumption of the dissociation pathway, it
241is a powerful tool for investigating ligand egress routes from
242buried binding sites.40,41 Thus, RAMD was applied to study
243the ligand egress pathways and inner loop dynamics upon
244ligand egress in full tetrameric models. It is well established
245that both PcPAL37 and TcPAM35 bind and react with Phe and

Figure 4. Reaction intermediate mimicking inhibitor binding
stabilizes the inner loop in PcPAL crystal structures. A close-up
view of the inner loop capping the active site, with highlighted
electron densities, is shown in the blue mesh. Electron densities are
absent in the apo PcPAL structure (a, 6H2O; the loop conformation
in the other PcPAL structures is shown in gray). The inner loop is
unambiguously visible in the electron density maps for the PcPAL
structures complexed with (R)-APEP and (S)-APPA37 [(b) 6HQF
and (c) 6F6T, respectively]. Electron densities are shown from the
2Fo−Fc maps, contoured at 1σ level.

Figure 5. Ligand egress dynamics in PAL and PAM models. Inner loop opening in PcPAL (a) and TcPAM (b), characterized by the TyrA−MIO
distance as a function of ligand egress. The x-axis shows the distance between the COM of the ligand and MIO and the y-axis shows the distance
between the COM of TyrA and MIO. Each plot shows aggregated data from 90 RAMD simulations. Dots in green represent data from the
simulations of PcPAL with Phe and dots in lime represent simulations with CA (a). Dots in yellow represent data from simulations of TcPAM with
Phe and dots in orange represent simulations with CA (b). Dashed and dotted dashed lines show TyrA−MIO COM distances in the “loop-in”
conformations in the crystal structures (6F6T for PcPAL and 2YII for TcPAM28). Dotted lines show the TyrA−MIO COM distance in the “loop-
out” conformation of 1W27.21 (c) Exit paths observed in PcPAL. (d) Exit paths observed in TcPAM. One representative path is depicted for each
observed pathway in both models. Bar graphs show the number of occurrences for the exit paths in the independent RAMD simulations for the two
ligands CA and Phe.
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246 CA. Therefore, our RAMD simulations investigated the release
247 of both Phe and CA, assuming that their binding/release
248 occurs via the same paths. The distance between the center of
249 mass (COM) of the catalytic TyrA (Tyr110 in PcPAL, Tyr80
250 in TcPAM) and that of the MIO residue served as a measure
251 of the inner loop opening, in accordance with the previous
252 study of Heberling et al.18

253 The MD simulations revealed that the inner loop persisted
254 in its closed “loop-in” state during the egress of either Phe or

f5 255 CA from the active site (Figure 5a,b). None of the models
256 transitioned to the “loop-out” conformation, as the MIO−
257 TyrA distances remained at the same low level associated with
258 the “loop-in” state. Furthermore, no loop opening was detected
259 in PcPAL or TcPAM with either ligand (Phe or CA) beyond
260 regular movements observable in the other active sites of the
261 tetrameric models (Figures S3 and S4). Therefore, the
262 crystallographic evidence combined with the RAMD results
263 rule out the biological relevance of the “loop-out” con-
264 formation of the inner loop.
265 Visual clustering of ligand egress paths revealed four distinct
266 ligand access pathways in PcPAL (Figure 5c). Four highly
267 homologous paths occurred in TcPAM (Figure 5d) as well,
268 suggesting that substrate access paths are conserved in
269 eukaryotic PALs and PAMs. Path I (pink) led between the
270 inner loop and another flexible loop capping the active site
271 (sometimes referred as outer loop). This pathway was
272 previously suggested as an access to the active site, based on
273 static crystallographic data.4,21 Statistical data corroborate the
274 previous hypothesis (Figure 5c,d: bar graphs), as this path was
275 frequently observed in the RAMD simulations. However, MD
276 data revealed three additional egress/access paths from/to the
277 active site. Path II (blue) progressed through the C-terminal
278 multihelix domain. Occurrence frequencies suggested path II
279 to be the most frequented egress route in PcPAL as well as in

280TcPAM. Path III (gray) proceeded through the hydrophobic
281part of the binding pocket, whereas path IV (orange) led
282through a turn in the inner loop. These two pathways were
283seldom taken by the ligands, suggesting that they have only a
284minor biological role, or they are just simulation artifacts.
285Identification of the Conserved Ligand Access
286Tunnel within the MIO Enzyme Family. In silico tools
287proved to be useful to uncover tunnels in crystal structures
288connecting the buried active sites with the solvent-exposed
289outer surface of the protein in several enzyme families such as
290cytochrome enzymes42 and dUTPase.41 There are many
291examples of tunnels important for protein function, including
292the effect of mutations on tunnel anatomy/function. Changes
293in the access tunnels can influence the activity, specificity,
294stability, or even enantioselectivity of an enzyme.43

295Inspired by the conservation of the ligand egress pathways in
296eukaryotic PAL and PAM, we further widened these studies to
297include the experimental structures of all archetypal MIO
298 f6enzymes (Figure 6a).
299Eukaryotic MIO enzymes (Figure 6b) contain 200 addi-
300tional residues at their C-terminal compared to the MIO
301enzymes of prokaryotic origin (Figure 6c). Tunnel analysis of
302PcPAL and TcPAM revealed that the newly discovered path II
303(Figure 5c,d) coincided with a conserved tunnel connecting
304the active site to the surface of the protein through the C-
305terminal multihelix domain (Figure 5d,e). This corroborated
306the biological relevance of path II and indicated that tunnel-
307finding algorithms like MOLE44 or CAVER45 may constitute
308suitable tools for finding such paths.
309In the prokaryotic MIO enzymes, the conserved ligand
310access paths (Figure 6f−i) show architecture that is highly
311similar to the common initial part of path I and path II (Figure
3126d,e) identified within the eukaryotic MIO enzymes (Figure
3136b). This conserved part of the tunnels leads through a

Figure 6. Initial part of path II in PcPAL and TcPAM coincides with the conserved tunnels in different classes of MIO enzymes. a. Phylogenetic
relationship of the archetypal MIO enzymes. In the tetrameric structures of MIO enzymes from eukaryotes (b) or prokaryotes (c), tunnel analysis
revealed a highly conserved tunnel connecting the active site to the surface of the protein in T. canadensis PAM [(d) PDB ID: 2YII)],28 P. crispum
PAL [(e) PDB ID: 6F6T], Anabaena variabilis PAL [(f) PDB ID: 3CZO],25 Pseudomonas putida HAL [(g) PDB ID: 1GKM)],19 Rhodobacter
sphaeroides TAL [(h) PDB ID: 2O6Y)],22 and Streptomyces globisporus TAM [(i) PDB ID: 2QVE)].24 Spheres colored to different shades of blue
represent distinct tunnels within the structures. The starting part of the exit path from the MIO until the bottleneck position (j) is highly
homologous in space in both eukaryotic (b) and prokaryotic (c) MIO enzymes, despite the large structural differences in the C-terminal multihelix
domains. Sequence analysis of the inner loop of the MIO enzymes (k) revealed that the bottleneck position is related to the fully conserved Tyr110
and Gly117 residues (PcPAL numbering). In the structure of Pantoea agglomerans PAM (3UNV),29 the tunnel analysis tool could not detect any
tunnel connecting the active site to the surface of the enzyme.
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314 bottleneck position defined by Tyr110, Gly117, and Arg354
315 (Figure 6j), which are strictly conserved within all MIO
316 enzymes (Figure 6k and Table S2), indicating a potential
317 evolutionary gatekeeper role of these residues. Moreover, this
318 tunnel was the only one with larger than 1.1 Å inner sphere
319 size connecting the active site with the surface of the protein in
320 all the investigated MIO enzymes. The structural character-
321 istics of the inner and outer loops capping the active sites
322 together with the access tunnel data suggest that path I and
323 path II constitute the major substrate access and product
324 release pathway not only in PcPAL and TcPAM but in all MIO
325 enzymes.
326 The active site of prokaryotic (S)-PAMs (archetype: Pantoea
327 agglomerans PAM, PaPAM) is the most shielded from the
328 surface of the protein; no tunnels with larger than 1.1 Å
329 diameter can be detected in the structure. Both path I and path
330 II appear to be blocked in PaPAM by residues being conserved
331 only within prokaryotic (S)-PAMs.29 In the structure of
332 PaPAM, a glutamine to glutamic acid substitution at position
333 317 (Figure S5) forms a strong salt bridge to Arg323 and
334 thereby blocks path I. Path II, a conserved tunnel in other MIO
335 enzymes (Figure 6), is narrowed in (S)-PAMs by the mutation
336 of asparagine to a bulkier phenylalanine at position 455 (Figure
337 S5.). This agrees with the proposed mechanism of (S)-PAMs
338 (Figure 1b), indicating the necessity of “caging” the
339 intermediate state of isomerization without serious movements
340 of the ligand within the active site.
341 Mutagenesis of Critical Access Tunnel Residues to
342 Tailor PAL and PAM Activities. We postulated that
343 narrowing the exit path I and/or II of PALs or (R)-PAM by
344 appropriate mutations of critical tunnel residues mimicking
345 those observed in (S)-PAMs could enhance the (S)-PAM
346 activity. Single and double mutants (Figure S5) were created
347 from a eukaryotic PAL (PcPAL), from a prokaryotic PAL (
348 Kangiella koreensis PAL, KkPAL46), and from a eukaryotic (R)-
349 PAM (TcPAM). Reactions starting from L-α-Phe, racemic β-
350 Phe, and CA evaluated the full spectrum of AL and AM
351 activities, by following the changes in α-Phe, β-Phe, and CA
352 quantities as a function of time for 168 h. Parallel
353 measurements of reactions with Pseudomonas fluorescens PAM
354 (PfPAM)47 served as controls for the (S)-PAM reactions.
355 Unsurprisingly, sealing either or both substrate-binding
356 tunnels in a eukaryotic PAL or in a prokaryotic PAL did not
357 create detectable AM or β-AL activity (Figures S6−S8).
358 Interestingly, in the reactions starting from L-α-Phe with wild-
359 type TcPAM, the amount of the AM reaction product
360 decreased after an initial buildup, and the AL product, CA,
361 accumulated after prolonged reaction times (Figures S6−S8).
362 This is probably the result of the trace AL activity and the
363 strongly shifted equilibrium of the AL reaction toward CA
364 formation from Phe. In contrast, the PfPAM-mediated
365 transformation of L-α-Phe revealed dominant AM activity
366 even after a prolonged reaction time (Figure S9).
367 In contrast, all the TcPAM mutants gained the ability to
368 convert (S)-β-Phe (see Figures S6−S8 displaying the progress
369 curves of the reactions starting from L-α-Phe, racemic β-Phe,

t1 370 and CA, respectively; Tables 1 and S4 containing the
371 conversion and enantiomeric composition data in various
372 biotransformations; and Figures S10−S13 displaying repre-
373 sentative HPLC chromatograms). Mutation TcPAM N458F,
374 influencing the initial part of path II, affected the enantiomeric
375 preference the least. In the reaction starting from α-Phe,
376 TcPAM N458F displayed not only significant α-AL but also

377AM activity. In the reaction that started from rac-β-Phe, the
378N458F mutant exhibited a weak and slightly (R)-selective β-
379AL activity and a fully suppressed AM activity. In agreement,
380this mutant converted CA in the ammonia addition to a
381mixture of (S)-α-Phe and (R)-β-Phe after 168 h.
382Mutation TcPAM Q319E, influencing the initial part of path
383I, altered the stereopreference of β-Phe enantiomers more
384significantly, exhibiting almost equal preference for both
385enantiomers. The Q319E mutation significantly decreased
386the enzyme activity in the reaction that started from L-α-Phe,
387and only a minimal formation of the AM reaction product
388along with the AL product could be detected after 168 h.
389Contrarily, when the reaction started from rac-β-Phe, TcPAM
390Q319E produced 36% CA, but no AM activity was observed.
391The nonselective conversion of racemic β-Phe means a
392significant activity increase toward (S)-β-Phe as compared to
393the wild-type enzyme. Inspecting the viability of the same
394mutant in the ammonia addition reaction onto CA, only a total
395conversion of 3% to β-Phe was revealed after 168 h.
396The TcPAM Q319E/N458F double mutant became an
397apparent (S)-β-AL as it showed the highest conversion of rac-
398β-Phe to CA, leaving (R)-β-Phe after 168 h. Consequently, the
399Q319E/N458F TcPAM consuming (S)-β-Phe with significant
400enantiomer selectivity may be considered a highly selective
401(S)-β-AL. Importantly, the double mutant TcPAM Q319E/
402N458F produced solely (S)-β-Phe in the addition reaction
403starting from CA after 168 h, indicating the high (S)-
404enantiopreference of the double mutant in the reverse β-AL
405direction as well.
406Overall, the introduction of any of the path-sealing (S)-
407PAM-like residues to TcPAM significantly decreased the AM
408activity and strongly hindered the mediation of ammonia
409addition to CA. In line with our initial assumptions, the
410mutation of only two residues (Q319E and N458F) could
411impair or even alter the stereoselectivity of the strictly (R)-
412selective TcPAM. Of the two mutations in TcPAM, the
413enantiomer selectivity-altering effect of Q319E TcPAM was
414more pronounced. Presumably, both the access tunnel
415modification and the involvement of Q319 in the binding of
416the substrate’s carboxylate group can be involved in the
417alteration effect. The synergistic effect of the two mutations
418rendered the double mutant TcPAM Q319E/N458F acting as
419an (S)-β-AL representing a nonassigned enzymatic function.

Table 1. Biotransformations of Racemic β-Phe with TcPAM
Constructs after 168 ha

β-Phea

TcPAM variant c [%] config. ees [%] Eb

TcPAM wt 40.9 S 94.3 n.d.c

TcPAM N458F 22.8 S 16.8 4
TcPAM Q319E 36.0 S 4.5 1
TcPAM Q319E/N458F 40.8 R 61.1 31

ac: conversion; config.: configuration of the residual β-Phe fraction;
ees: enantiomeric excess of the residual fraction of the rac-β-Phe
substrate. bEnantiomer selectivity (E) in kinetic resolutions by an
irreversible reaction was calculated, as defined by Sih and co-
workers:48 Ec,ees = ln[(1 − c)(1 − ees)]/ln[(1 − c)(1 + ees)].

cNot
determined because the enantiomer selectivity (E) interpreted by the
above formula is valid only for irreversible reactions (the wt-TcPAM-
mediated reactions are reversible even in the presence of trace
amounts of ammonia).

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.1c00266
ACS Catal. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c00266?rel=cite-as&ref=PDF&jav=AM
PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Highlight
(move to the next raw)

PoppeL
Cross-Out

PoppeL
Inserted Text
racemic 

PoppeL
Cross-Out

PoppeL
Inserted Text
racemic 



420 ■ DISCUSSION

421 A wealth of evidence has already supported the mechanism
422 through an N-MIO intermediate (Figure 1a) in different MIO
423 enzymes;1,13 however, until now, there was no direct
424 demonstration of the formation of the N-MIO intermediate
425 in the PAL reaction. Earlier, due to the weak acidity of the β-
426 hydrogen atoms, a FC-like mechanism involving an electro-
427 philic attack of the MIO catalytic residue at the aromatic ring
428 of the substrate was also proposed for the HAL49 and PAL11

429 reactions. Later, the crystal structure of RsTAL showed the
430 AIP inhibitor to be covalently bound via its amino group to
431 MIO, supporting the N-MIO mechanism for TALs.22 The
432 quantum mechanics/molecular mechanics studies also con-
433 firmed the N-MIO mechanism for RsTAL from a theoretical
434 aspect.13 To consolidate the two reaction mechanisms, it was
435 suggested that TAL/TAM enzymes use the N-MIO mecha-
436 nism, whereas PAM/PAL enzymes use the FC mechanism.50

437 However, kinetic isotope effects indicated the N-MIO
438 mechanism for (S)-β-selective PAM,15 and later, the crystal
439 structure of a PaPAM binding both α- and β-Phe covalently via
440 their amino groups to MIO provided the direct support of the
441 N-MIO mechanism for PAMs.29 PcPAL was also shown to
442 catalyze ammonia elimination from nonaromatic substrates,
443 propargylglycine,51 styrylalanine,52 or cyclooctatetraenylala-
444 nine,53 necessarily favoring the N-MIO mechanism; however,
445 direct structural evidence supporting the N-MIO mechanism
446 for PALs has not been published yet. The crystal structures,
447 especially PcPAL complexed with the phosphonic acid
448 analogue of the natural substrate, (R)-(1-amino-2-
449 phenylethyl)phosphonic acid (PDB ID: 6HQF), presented in
450 this work fill this gap and provide direct evidence for the N-
451 MIO mechanism for PALs. Based on the above arguments, it is
452 almost certain that reactions of all MIO enzymes proceed by
453 mechanisms involving the N-MIO intermediate, despite the
454 absence of direct structural evidence for HALs.
455 A hypothesis suggested that the altered flexibility of the
456 inner loop is responsible for the AL versus AM activity
457 switch.18,35 Mutagenesis results supported the hypothesis, as
458 enhancing the flexibility of the inner loop of TcPAM resulted
459 in AL phenotype.18 The theory has been strongly based on the
460 structure 1W2721 with its inner loop in the “loop-out”
461 conformation. However, this state is ambiguous due to the
462 weak electron density for this loop region and poor fit of the
463 modeled loop to the electron density map (Figure S1). The
464 crystal structures, 6F6T and 6HQF, showed for the first time in
465 a eukaryotic PAL structure well-defined electron densities that
466 enabled the determination of the catalytically competent “loop-
467 in” conformation for the inner loop. A series of RAMD
468 simulations within PcPAL and TcPAM models revealed only
469 small changes in inner loop conformations, allowing the egress
470 of ligands from the active site of both enzymes. These results
471 agree with the “principle of least motion” for organic
472 reactions,54,55 which seemed to be generalizable to enzyme-
473 catalyzed reactions as well.13,56,57 Together, the lack of
474 crystallographic evidence and the RAMD results call into
475 question the actual formation and biological significance of the
476 “loop-out” conformation of the inner loop. The altered loop
477 flexibility hypothesis is weakened by the failure of efforts to
478 convert an AL to AM by reverse mutagenesis, attempting to
479 increase the rigidity of the inner loop to introduce the AM
480 function.36 Moreover, the loop flexibility hypothesis cannot
481 explain the regioselectivity difference between ALs and AMs in

482the reverse reaction: while ALs result in α-amino acids
483solely,1,7 AMs always produce a mixture of α- and β-amino
484acids.35 Furthermore, our results also indicated that loop
485flexibility differences can only partially explain the differences
486between ALs and AMs.
487Aiming at the development of more active biocatalysts and
488the fundamental understanding of MIO enzymes, several
489studies investigated the molecular basis of the activity
490differences between ALs and AMs. The effect of mutating
491the substrate-orienting residues on AM activity was explored,
492and it mostly resulted in a decrease in AM activity. Mutating
493E239 in Streptomyces maritimus PAM (SmPAM) to Gln or Met
494shifted the addition reaction to the α direction, whereas the
495enantioselectivity remained unaltered.58 We found that the
496equivalent reverse mutation Q319E in TcPAM resulted in
497significantly decreased activity in the addition reaction but
498retained an AL and some AM activity for both α- and β-Phe.
499Mutation of Q319M in TcPAM resulted in enhanced (R)-β-
500Phe production in the addition reaction (88%:12% β/α-Phe
501product).28 Two independent studies showed that mutating
502F455 in PaPAM to Asn or Ala resulted in a significantly
503reduced reaction rate when started from α-Phe and in a
504decreased production of β-Phe and in an increased production
505of CA.29,59 The authors explained the decreases in the β-
506products by the substrate-orienting effects of these residues.
507The reverse N458F mutation in TcPAM resulted in an
508enhanced (R)-β-Phe production in the ammonia addition
509reaction (85%:15% β/α-Phe product).60 Although the N458F
510mutation in our experiments significantly decreased the rate of
511the addition reaction, our TcPAM N458F mutant displayed
512enhanced activity toward β-Phe, compared to that found for
513the transformation of α-Phe. The discrepancies concerning the
514already published conversion values for the PAM-mediated
515ammonia addition reactions can be mostly attributed to the
516wide variety of the used reaction medium (ammonia
517concentration, type of buffers, pH, etc.). Nonetheless, the
518biocatalytic performances of the (R)-selective wt-TcPAM and
519of the (S)-selective wt-PfPAM checked by us in the ammonia
520addition reactions were in good concordance with those
521already reported.28,47

522Remarkably, only marginal efforts have been dedicated at
523investigating the molecular background and engineering of the
524enantioselectivity of MIO enzymes. ALs show virtually perfect
525enantioselectivity for their natural substrates.61 The different
526types of PAM also show perfect enantioselectivity to either
527(R)-β-Phe14 or (S)-β-Phe.15 However, prokaryotic TAMs
528produce a mixture of (R)-and (S)-β-Tyr.4,16 On the other
529hand, enantioselectivity of MIO enzymes for non-natural
530substrates is highly variable.58 Our previous study showed that
531the methylidene group at the β-position in APPA altered the
532enantiopreference of binding of this phosphonic acid analogue
533of Phe in PALs.37 Our recent set of experiments introducing
534the binding pathway-blocking residues from the (S)-selective
535PaPAM to the (R)-selective TcPAM indicated the potential of
536structure-based enzyme access tunnel engineering to alter the
537enantioselectivity of MIO enzymes (Figure 6). The strict
538enantiomer preference of the (R)-selective TcPAM altered
539significantly in both the ligand access tunnel mutants of
540TcPAM, whereas the double mutant became an (S)-selective
541β-AL.
542Previously, two main approaches have been used to modify
543AL and AM activities, namely, the loop flexibility modulation
544and substrate-binding modulation. In this study, a third

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.1c00266
ACS Catal. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c00266/suppl_file/cs1c00266_si_001.pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c00266?rel=cite-as&ref=PDF&jav=AM
PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Cross-Out

PoppeL
Inserted Text
-(MIO-enzymes)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Highlight
(italics)

PoppeL
Cross-Out

PoppeL
Inserted Text
2-Aminoindan-2-phosphonic acid (AIP)



545 approachthe combined use of RAMD simulations and
546 tunnel analysisidentified residues Q319 and N458 as
547 potential gatekeepers of key substrate access tunnels and
548 revealed the possibility of modifying AL and AM activities.
549 Undeniably, the simulations and crystal structures unanimously
550 showed that both Q319 and N458 play dual roles in the AL
551 and AM reactions: substrate orientation during the reaction
552 and modulation of substrate access channels. In fact, the single
553 mutation Q319E alone or in synergistic cooperation with the
554 N458F mutation generated TcPAM variants with shifted
555 stereopreference toward (S)-β-Phe as the substrate. Residue
556 Q319 is located in path I in the neighborhood of the active site
557 of TcPAM, and most likely, it is also involved in the fixation of
558 the substrate’s carboxylate group. Thus, the altered carbox-
559 ylate-binding mode due to the Q319E mutation could also
560 contribute to the ability of the double mutant TcPAM Q319E/
561 N458F to convert or form (S)-β-Phe in the ammonia
562 elimination or in the ammonia addition reactions, respectively.
563 It is quite possible that all MIO enzymes hold the potential for
564 α-AL, β-AL, (R)-AM, and (S)-AM activities, and their
565 experimental observation depends on the relative rate of
566 each reaction. For example, a recent study revealed the (S)-AM
567 activity of a prokaryotic PAL after prolonged reaction times
568 with non-natural substrates.58

f7 569 The data summarized in Figure 7 represent how the different
570 (S)-PAM-like ligand path-sealing mutations led from the (R)-
571 selective TcPAM to the development of (S)-β-PAL activity,
572 representing a nonassigned type of enzymatic activity.
573 Although our original aim was to alter the binding dynamics
574 and thus create an (S)-PAM from an (R)-PAM, the (S)-PAM-
575 like ligand path-sealing mutations probably influenced the
576 shape and catalytic abilities of the active site as well. The fact
577 that the active site of TcPAM could accommodate (S)-β-AL
578 activity as well underlines the versatility of the MIO enzyme
579 scaffold not just for substrate accommodation engineering but

580for enantioselectivity engineering as well. It is noteworthy that
581sealing access tunnels is not easy at all; in α/β-hydrolases,
582insertion of Cys−Cys bridge was the only, yet not perfect, way
583to seal the access tunnels by mutagenesis.62

584In conclusion, we demonstrated that strongly binding
585inhibitors can stabilize the inner loop of a eukaryotic PAL in
586a catalytically competent conformation and provide key
587insights into understanding the reactivity and enantioselectivity
588of MIO enzymes in general. MD simulations showed that
589ligand egress proceeds without a large-scale movement of the
590inner loop and indicated conserved ligand-binding tunnels
591within the protein family. We exploited tunnel engineering and
592constructed from an (R)-selective PAM an altered enzyme
593performing (S)-β-AL activity.43 These results provide further
594evidence to the potential of the MIO scaffold to catalyze α-AL,
595β-AL, (R)-AM, and (S)-AM reactions and raise questions
596about the exact molecular mechanism of enantioselectivity in
597MIO enzymes.

598■ METHODS

599Standard protocols used for cloning, site-directed mutagenesis,
600protein expression, and PAL and aminomutase activity
601measurements are detailed in Supporting Information Methods
602and Tables S5−S8. The enzyme activity measurements for the
603TcPAM variants were carried out at two different experimental
604locations, in Budapest and in Cluj-Napoca from biological
605replicates. The repeated experiments provided equal results for
606both the PAL and aminomutase activities.
607Crystallization. Extensive trials of crystallization of PcPAL-
608His10 in the apo form were unsuccessful. Therefore, PcPAL-
609His10 solutions were supplemented with a 10-fold molar excess
610of (S)-APPA prior to crystallization. Crystals grew within
611weeks of setting up drops from a one-to-one mixture of the
612protein solution and the precipitant (14 w/v % PEG 6000,

Figure 7. Substrate access tunnel engineering modulates PAM, PAL, and β-PAL activity and enantioselectivity in MIO enzymes. Wild-type TcPAM
catalyzes the interconversion between L-α-Phe, CA, and (R)-β-Phe. TcPAL (N458F) and TcPAL (Q319E) catalyze the ammonia elimination from
L-α-Phe, (R)-β-Phe, and (S)-β-Phe. The most predominant activity of the double mutant of TcPAM (Q319E, N458F) is the selective ammonia
elimination from (S)-β-Phe.
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613 HEPES 0.15 M pH 7.0), using the hanging drop vapor
614 diffusion method with 2 μL drops.
615 Removal of His10-tag significantly enhanced crystal for-
616 mation, and numerous hits were obtained from the initial
617 screens. Crystals for the diffraction experiments were grown
618 using 20−26 w/v % PEG 3350 and potassium formate 0.1−0.3
619 M as a precipitant. Crystals of PcPAL in apo form grew within
620 weeks of setting up drops from a one-to-one mixture of the
621 protein solution and the precipitant, using the hanging drop
622 vapor diffusion method with 1−3 μL drops.
623 Structure Determination. Diffraction dataset for 6F6T
624 was collected at DESY Hamburg beamline MX2-P14, and
625 datasets for 6H2O and 6HQF were collected in ELETTRA
626 beamline 5.2R XRD1. XDS63 was used for data processing.
627 Structures were solved by molecular replacement by Phaser64

628 using 1W27 as a starting model for 6F6T and with 6F6T as a
629 starting model for 6H2O and 6HQF. Models were refined by
630 PHENIX65 and manually adjusted in Coot.66 Data collection
631 and refinement details are listed in Table S3.
632 Molecular Dynamics Simulations. Details for model
633 establishments and MD simulations are described in the model
634 preparation for molecular modeling and MD simulation
635 sections of the Supporting Information. In the tetrameric
636 models, four different states of the active site were probed: (A)
637 RAMD model of ligand release, (B) ligand-bound state, (C)
638 the enzyme state after ligand release (with MIO after Phe
639 release and with NH2-MIO after CA release), and (D) the apo
640 state (see Table S9 for simulation details). During the RAMD
641 simulations, only one active site (A) received an additional
642 acceleration force; the other three (B−D) served as controls
643 for the ground-state behavior of the enzyme. Prior to RAMD
644 simulations, a short MD simulation ensured equilibration of
645 the models (Figure S14) and determined the equilibrium
646 behavior of the models. Protein flexibility is a key focus of this
647 investigation; therefore, the appropriate modeling was also
648 confirmed by comparing the crystallographic B factors to the
649 root-mean-square fluctuation values in the MD simulations
650 (Figure S15). Snapshots extracted from the MD simulations at
651 10 ns, 15 ns, and 20 ns served as starting conformations for the
652 RAMD simulations.
653 RAMD Simulations. The RAMD39 enhanced sampling
654 method applies an artificial force to the substrate in a random
655 orientation, accelerating the dissociation process.
656 First, optimal values were searched by RAMD runs with
657 varied parameters for the acceleration of the substrate and for
658 the minimum distance that the substrate must travel to keep
659 the direction of the acceleration to set up the final RAMD
660 simulations. Excessive acceleration or short distances will
661 produce unnatural exit paths, whereas no exit will be observed
662 during the desired timescale if the acceleration is too low. To
663 obtain comparable results in the four models, the test
664 simulations were run from all 12 starting structures with
665 different setups. Acceleration and displacement settings were
666 optimized to achieve exit times between 0.1 and 2 ns.
667 Accelerations varied from 0.07 to 0.16 kcal mol−1 Å−1 by 0.1
668 steps during the optimization. For the accelerations 0.10, 0.11,
669 and 0.12 kcal mol−1 Å−1, three displacement settings (0.1, 0.5,
670 and 1 Å) were also assayed. Table S10 lists the parameter
671 optimization results.
672 Finally, 15 independent RAMD simulations with 0.11 kcal
673 mol−1 Å−1 acceleration and 0.05 Å displacement settings were
674 run from each of the three starting structures extracted from

675the MD simulations, resulting in 45 RAMD simulations for
676each of the four models.
677Analysis of RAMD Simulations. Visual molecular
678dynamics67 package was used for visual trajectory analysis.
679Tcl/Tk scripts measured the geometric parameters and
680movements in the trajectories. All data analyses were
681performed using R software.68

682Tunnel Analysis in MIO Enzymes. MOLEonline44 was
683used for tunnel analysis within various MIO enzyme structures.
684Residues TyrA and MIO were selected as the starting point of
685the tunnel. The probe radius was set to 3 Å, the interior
686threshold to 1.1 Å, and the minimum depth to 5.0 Å for the
687cavity search. The bottleneck radius was set to 1.1 Å for the
688tunnel search, and all advanced parameters were left at their
689default values.
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